import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR.") parser.add_argument( "--cls_model", required=True, help="Path of Classification model of PPOCR.") parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--det_use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") parser.add_argument( "--cls_use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") parser.add_argument( "--rec_use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") return parser.parse_args() def build_det_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu() if args.det_use_trt: option.use_trt_backend() #det_max_side_len 默认为960,当用户更改DET模型的max_side_len参数时,请将此参数同时更改 det_max_side_len = 960 option.set_trt_input_shape("x", [1, 3, 50, 50], [1, 3, 640, 640], [1, 3, det_max_side_len, det_max_side_len]) return option def build_cls_option(args): option = fd.RuntimeOption() option.use_paddle_backend() if args.device.lower() == "gpu": option.use_gpu() if args.cls_use_trt: option.use_trt_backend() option.set_trt_input_shape("x", [1, 3, 32, 100]) return option def build_rec_option(args): option = fd.RuntimeOption() option.use_paddle_backend() if args.device.lower() == "gpu": option.use_gpu() if args.rec_use_trt: option.use_trt_backend() option.set_trt_input_shape("x", [1, 3, 48, 10], [1, 3, 48, 320], [1, 3, 48, 2000]) return option args = parse_arguments() #Det模型 det_model_file = os.path.join(args.det_model, "inference.pdmodel") det_params_file = os.path.join(args.det_model, "inference.pdiparams") #Cls模型 cls_model_file = os.path.join(args.cls_model, "inference.pdmodel") cls_params_file = os.path.join(args.cls_model, "inference.pdiparams") #Rec模型 rec_model_file = os.path.join(args.rec_model, "inference.pdmodel") rec_params_file = os.path.join(args.rec_model, "inference.pdiparams") rec_label_file = args.rec_label_file #默认 det_model = fd.vision.ocr.DBDetector("") cls_model = fd.vision.ocr.Classifier() rec_model = fd.vision.ocr.Recognizer() #模型初始化 if (len(args.det_model) != 0): det_runtime_option = build_det_option(args) det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_runtime_option) if (len(args.cls_model) != 0): cls_runtime_option = build_cls_option(args) cls_model = fd.vision.ocr.Classifier( cls_model_file, cls_params_file, runtime_option=cls_runtime_option) if (len(args.rec_model) != 0): rec_runtime_option = build_rec_option(args) rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_runtime_option) ppocrsysv2 = fd.vision.ocr.PPOCRSystemv2( ocr_det=det_model._model, ocr_cls=cls_model._model, ocr_rec=rec_model._model) # 预测图片准备 im = cv2.imread(args.image) #预测并打印结果 result = ppocrsysv2.predict(im) print(result) # 可视化结果 vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")