// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/common/processors/convert.h" namespace fastdeploy { namespace vision { Convert::Convert(const std::vector& alpha, const std::vector& beta) { FDASSERT(alpha.size() == beta.size(), "Convert: requires the size of alpha equal to the size of beta."); FDASSERT(alpha.size() != 0, "Convert: requires the size of alpha and beta > 0."); alpha_.assign(alpha.begin(), alpha.end()); beta_.assign(beta.begin(), beta.end()); } bool Convert::CpuRun(Mat* mat) { cv::Mat* im = mat->GetCpuMat(); std::vector split_im; cv::split(*im, split_im); for (int c = 0; c < im->channels(); c++) { split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]); } cv::merge(split_im, *im); return true; } #ifdef ENABLE_OPENCV_CUDA bool Convert::GpuRun(Mat* mat) { cv::cuda::GpuMat* im = mat->GetGpuMat(); std::vector split_im; cv::cuda::split(*im, split_im); for (int c = 0; c < im->channels(); c++) { split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]); } cv::cuda::merge(split_im, *im); return true; } #endif bool Convert::Run(Mat* mat, const std::vector& alpha, const std::vector& beta, ProcLib lib) { auto c = Convert(alpha, beta); return c(mat, lib); } } // namespace vision } // namespace fastdeploy