""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from unittest.mock import Mock import numpy as np import paddle import paddle.device.cuda.graphs as graphs from fastdeploy.config import ( CacheConfig, FDConfig, GraphOptimizationConfig, ParallelConfig, SchedulerConfig, ) class MockForwardMeta: def __init__(self): # chunked MoE related. self.moe_num_chunk = 1 self.max_moe_num_chunk = 1 class FakeModelConfig: def __init__(self): self.hidden_size = 768 self.intermediate_size = 768 self.num_hidden_layers = 12 self.num_attention_heads = 12 self.rms_norm_eps = 1e-6 self.tie_word_embeddings = True self.ori_vocab_size = 32000 self.moe_layer_start_index = 8 self.pretrained_config = Mock() self.pretrained_config.prefix_name = "test" self.num_key_value_heads = 1 self.head_dim = 1 self.is_quantized = False self.hidden_act = "relu" self.vocab_size = 32000 self.hidden_dropout_prob = 0.1 self.initializer_range = 0.02 self.max_position_embeddings = 512 self.tie_word_embeddings = True self.model_format = "auto" self.enable_mm = False self.max_model_len = 512 self.logprobs_mode = "raw_logprobs" def get_default_test_fd_config(): graph_opt_config = GraphOptimizationConfig(args={}) scheduler_config = SchedulerConfig(args={}) scheduler_config.max_num_seqs = 1 parallel_config = ParallelConfig(args={}) parallel_config.data_parallel_rank = 1 cache_config = CacheConfig({}) model_config = FakeModelConfig() fd_config = FDConfig( graph_opt_config=graph_opt_config, parallel_config=parallel_config, cache_config=cache_config, scheduler_config=scheduler_config, model_config=model_config, test_mode=True, ) return fd_config class OpPerformanceTester: def __init__(self, op_name, op_fn, num_layers=20, weight_size=None, gate=None): self.op_name = op_name self.op_fn = op_fn self.num_layers = num_layers self.weight_size = weight_size self.gate = gate def _fake_model_run(self, x): for j in range(self.num_layers): if self.gate: out = self.op_fn(x, self.gate, forward_meta=MockForwardMeta()) else: out = self.op_fn(x) return out def benchmark(self, input_size, batch_sizes, dtype="bfloat16", num_warmup=1, num_tests=10): print(f"======== {self.op_name} Performance ========") print( "{:<15} {:<40} {:<15} {:<15} {:<15}".format( "Batch Size", "Last 5 Times (us)", "Last Time (us)", "TFlops", "TB/s" ) ) for idx, bsz in enumerate(batch_sizes): x = paddle.rand((bsz, input_size), dtype=dtype) self._fake_model_run(x) graph = graphs.CUDAGraph() graph.capture_begin() self._fake_model_run(x) graph.capture_end() start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)] end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)] for i in range(num_tests): start_events[i].record() graph.replay() end_events[i].record() paddle.device.synchronize() times = np.array([round(s.elapsed_time(e), 2) for s, e in zip(start_events, end_events)])[num_warmup:] times = times * 1e3 / self.num_layers # us / layer times = np.array([round(time, 2) for time in times]) last_5_times = times[-5:] last_time = times[-1] tfloaps = None tbps = None if self.weight_size: flops = 2 * bsz * self.weight_size memory = self.weight_size tfloaps = round(flops / 1e12 / (last_time * 1e-6), 1) tbps = round(memory / 1e12 / (last_time * 1e-6), 1) print("{:<15} {:<40} {:<15} {:<15} {:<15}".format(bsz, str(last_5_times), last_time, tfloaps, tbps)) else: print("{:<15} {:<40} {:<15}".format(bsz, str(last_5_times), last_time))