// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dpm_solver_multistep_scheduler.h" #include "fastdeploy/vision/common/processors/mat.h" #include "fastdeploy/utils/perf.h" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "pipeline_stable_diffusion_inpaint.h" #include #include #include #include template std::string Str(const T* value, int size) { std::ostringstream oss; oss << "[ " << value[0]; for (int i = 1; i < size; ++i) { oss << " ," << value[i]; } oss << " ]"; return oss.str(); } std::unique_ptr CreateRuntime(const std::string& model_file, const std::string& params_file, bool use_paddle_backend = true) { fastdeploy::RuntimeOption runtime_option; runtime_option.SetModelPath(model_file, params_file, fastdeploy::ModelFormat::PADDLE); runtime_option.UseGpu(); if (use_paddle_backend) { runtime_option.UsePaddleBackend(); } else { runtime_option.UseOrtBackend(); } std::unique_ptr runtime = std::unique_ptr(new fastdeploy::Runtime()); if (!runtime->Init(runtime_option)) { std::cerr << "--- Init FastDeploy Runitme Failed! " << "\n--- Model: " << model_file << std::endl; return nullptr; } else { std::cout << "--- Init FastDeploy Runitme Done! " << "\n--- Model: " << model_file << std::endl; } return runtime; } int main() { // 1. Init scheduler std::unique_ptr dpm( new fastdeploy::DPMSolverMultistepScheduler( /* num_train_timesteps */ 1000, /* beta_start = */ 0.00085, /* beta_end = */ 0.012, /* beta_schedule = */ "scaled_linear", /* trained_betas = */ {}, /* solver_order = */ 2, /* predict_epsilon = */ true, /* thresholding = */ false, /* dynamic_thresholding_ratio = */ 0.995, /* sample_max_value = */ 1.0, /* algorithm_type = */ "dpmsolver++", /* solver_type = */ "midpoint", /* lower_order_final = */ true)); // 2. Init text encoder runtime std::string text_model_file = "sd15_inpaint/text_encoder/inference.pdmodel"; std::string text_params_file = "sd15_inpaint/text_encoder/inference.pdiparams"; std::unique_ptr text_encoder_runtime = CreateRuntime(text_model_file, text_params_file, false); // 3. Init vae encoder runtime std::string vae_encoder_model_file = "sd15_inpaint/vae_encoder/inference.pdmodel"; std::string vae_encoder_params_file = "sd15_inpaint/vae_encoder/inference.pdiparams"; std::unique_ptr vae_encoder_runtime = CreateRuntime(vae_encoder_model_file, vae_encoder_params_file); // 4. Init vae decoder runtime std::string vae_decoder_model_file = "sd15_inpaint/vae_decoder/inference.pdmodel"; std::string vae_decoder_params_file = "sd15_inpaint/vae_decoder/inference.pdiparams"; std::unique_ptr vae_decoder_runtime = CreateRuntime(vae_decoder_model_file, vae_decoder_params_file); // 5. Init unet runtime std::string unet_model_file = "sd15_inpaint/unet/inference.pdmodel"; std::string unet_params_file = "sd15_inpaint/unet/inference.pdiparams"; std::unique_ptr unet_runtime = CreateRuntime(unet_model_file, unet_params_file); // 6. Init fast tokenizer paddlenlp::fast_tokenizer::tokenizers_impl::ClipFastTokenizer tokenizer( "clip/vocab.json", "clip/merges.txt", /* max_length = */ 77); fastdeploy::StableDiffusionInpaintPipeline pipe( std::move(vae_encoder_runtime), std::move(vae_decoder_runtime), std::move(text_encoder_runtime), std::move(unet_runtime), /* scheduler = */ std::move(dpm), tokenizer); // 7. Read images auto image = cv::imread("overture-creations.png"); auto mask_image = cv::imread("overture-creations-mask.png"); // 8. Predict std::vector prompts = { "Face of a yellow cat, high resolution, sitting on a park bench"}; std::vector outputs; fastdeploy::TimeCounter tc; tc.Start(); pipe.Predict(prompts, image, mask_image, &outputs, /* height = */ 512, /* width = */ 512, /* num_inference_steps = */ 50); tc.End(); tc.PrintInfo(); fastdeploy::vision::FDMat mat = fastdeploy::vision::FDMat::Create(outputs[0]); cv::imwrite("cat_on_bench_new.png", *mat.GetOpenCVMat()); return 0; }