""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from contextlib import contextmanager, nullcontext import paddle import paddle.distributed as dist from paddle.distributed import fleet _TP_AR = None @contextmanager def capture_custom_allreduce(): global _TP_AR ar_context = nullcontext() if _TP_AR is not None: ar_context = _TP_AR.capture() with ar_context: yield def use_custom_allreduce(custom_all_reduce_max_bytes: int = 8192 * 1024): hcg = fleet.get_hybrid_communicate_group() model_parallel_group = hcg.get_model_parallel_group() global _TP_AR from fastdeploy.distributed.custom_all_reduce import CustomAllreduce _TP_AR = CustomAllreduce(model_parallel_group, custom_all_reduce_max_bytes) try: @paddle.jit.marker.unified def tensor_model_parallel_all_reduce( input_: paddle.Tensor, group_: paddle.distributed.communication.group.Group = None, ) -> paddle.Tensor: """All-reduce the input tensor across model parallel group.""" global _TP_AR if _TP_AR is not None and _TP_AR.should_custom_ar(input_): # TODO: supports different_group custom allreduce _TP_AR.custom_all_reduce(input_) elif paddle.in_dynamic_mode(): if group_ is not None: dist.all_reduce(input_, group=group_) else: hcg = fleet.get_hybrid_communicate_group() mp_group = hcg.get_model_parallel_group() dist.all_reduce(input_, group=mp_group) else: dist.all_reduce(input_) except: tensor_model_parallel_all_reduce = None