# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from fastdeploy.model_executor.ops.xpu import draft_model_postprocess def draft_model_postprocess_cpu( base_model_draft_tokens, # 2D列表: [bsz, base_model_draft_token_len] # 1D列表: [bsz] base_model_seq_lens_encoder, # 1D列表: [bsz] base_model_stop_flags, # 1D列表: [bsz] ): bsz = base_model_draft_tokens.shape[0] base_model_draft_token_len = base_model_draft_tokens.shape[1] base_model_seq_lens_this_time = paddle.ones((bsz), dtype=paddle.int32) # 遍历每个样本 for tid in range(bsz): if (not base_model_stop_flags[tid]) and (base_model_seq_lens_encoder[tid] == 0): # 获取当前样本的草稿token列表 base_model_draft_tokens_now = base_model_draft_tokens[tid] token_num = 0 for i in range(base_model_draft_token_len): if base_model_draft_tokens_now[i] != -1: token_num += 1 # 更新序列长度 base_model_seq_lens_this_time[tid] = token_num elif base_model_stop_flags[tid]: # 已停止的样本序列长度为0 base_model_seq_lens_this_time[tid] = 0 return [base_model_seq_lens_this_time] def test_draft_model_postprocess(batch_size=1, base_model_draft_token_len=8192): # 批次大小 paddle.seed(66) base_model_draft_tokens = paddle.randint( low=-1, high=1, shape=[batch_size, base_model_draft_token_len], dtype="int64", ) # base_model_seq_lens_this_time = paddle.ones((batch_size), dtype=paddle.int32) base_model_seq_lens_encoder = paddle.randint(low=0, high=2, shape=[batch_size], dtype="int32") random_floats = paddle.rand(shape=[batch_size]) base_model_stop_flags = random_floats >= 0.5 base_model_seq_lens_this_time = draft_model_postprocess_cpu( base_model_draft_tokens, # 2D列表: [bsz, base_model_draft_token_len] base_model_seq_lens_encoder, # 1D列表: [bsz] base_model_stop_flags, ) base_model_seq_lens_this_time_xpu = paddle.ones((batch_size), dtype=paddle.int32) draft_model_postprocess( base_model_draft_tokens, # 2D列表: [bsz, base_model_draft_token_len] base_model_seq_lens_this_time_xpu, # 1D列表: [bsz] base_model_seq_lens_encoder, # 1D列表: [bsz] base_model_stop_flags, ) print("test start") assert np.allclose(base_model_seq_lens_this_time, base_model_seq_lens_this_time_xpu) print("test passed") def test_enough_cases(): test_draft_model_postprocess(100, 1024) test_draft_model_postprocess(1, 11) test_draft_model_postprocess(1, 8192) test_draft_model_postprocess(2, 2048) test_draft_model_postprocess(3, 1023) test_draft_model_postprocess(4, 2047) test_draft_model_postprocess(5, 4095) test_draft_model_postprocess(10, 9191) test_draft_model_postprocess(20, 618) test_draft_model_postprocess(30, 703) test_draft_model_postprocess(100, 1025) test_draft_model_postprocess(1536, 1026) if __name__ == "__main__": test_enough_cases()