# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR.") parser.add_argument( "--cls_model", required=True, help="Path of Classification model of PPOCR.") parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.") parser.add_argument( "--backend", type=str, default="default", help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu" ) parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") parser.add_argument( "--cpu_thread_num", type=int, default=9, help="Number of threads while inference on CPU.") parser.add_argument( "--cls_bs", type=int, default=1, help="Classification model inference batch size.") parser.add_argument( "--rec_bs", type=int, default=6, help="Recognition model inference batch size") return parser.parse_args() def build_option(args): det_option = fd.RuntimeOption() cls_option = fd.RuntimeOption() rec_option = fd.RuntimeOption() det_option.set_cpu_thread_num(args.cpu_thread_num) cls_option.set_cpu_thread_num(args.cpu_thread_num) rec_option.set_cpu_thread_num(args.cpu_thread_num) if args.device.lower() == "gpu": det_option.use_gpu(args.device_id) cls_option.use_gpu(args.device_id) rec_option.use_gpu(args.device_id) if args.device.lower() == "kunlunxin": det_option.use_kunlunxin() cls_option.use_kunlunxin() rec_option.use_kunlunxin() return det_option, cls_option, rec_option if args.backend.lower() == "trt": assert args.device.lower( ) == "gpu", "TensorRT backend require inference on device GPU." det_option.use_trt_backend() cls_option.use_trt_backend() rec_option.use_trt_backend() # 设置trt input shape # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数. det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) cls_option.set_trt_input_shape("x", [1, 3, 48, 10], [args.cls_bs, 3, 48, 320], [args.cls_bs, 3, 48, 1024]) rec_option.set_trt_input_shape("x", [1, 3, 32, 10], [args.rec_bs, 3, 32, 320], [args.rec_bs, 3, 32, 2304]) # 用户可以把TRT引擎文件保存至本地 det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt") cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt") rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt") elif args.backend.lower() == "pptrt": assert args.device.lower( ) == "gpu", "Paddle-TensorRT backend require inference on device GPU." det_option.use_trt_backend() det_option.enable_paddle_trt_collect_shape() det_option.enable_paddle_to_trt() cls_option.use_trt_backend() cls_option.enable_paddle_trt_collect_shape() cls_option.enable_paddle_to_trt() rec_option.use_trt_backend() rec_option.enable_paddle_trt_collect_shape() rec_option.enable_paddle_to_trt() # 设置trt input shape # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数. det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) cls_option.set_trt_input_shape("x", [1, 3, 48, 10], [args.cls_bs, 3, 48, 320], [args.cls_bs, 3, 48, 1024]) rec_option.set_trt_input_shape("x", [1, 3, 32, 10], [args.rec_bs, 3, 32, 320], [args.rec_bs, 3, 32, 2304]) # 用户可以把TRT引擎文件保存至本地 det_option.set_trt_cache_file(args.det_model) cls_option.set_trt_cache_file(args.cls_model) rec_option.set_trt_cache_file(args.rec_model) elif args.backend.lower() == "ort": det_option.use_ort_backend() cls_option.use_ort_backend() rec_option.use_ort_backend() elif args.backend.lower() == "paddle": det_option.use_paddle_infer_backend() cls_option.use_paddle_infer_backend() rec_option.use_paddle_infer_backend() elif args.backend.lower() == "openvino": assert args.device.lower( ) == "cpu", "OpenVINO backend require inference on device CPU." det_option.use_openvino_backend() cls_option.use_openvino_backend() rec_option.use_openvino_backend() return det_option, cls_option, rec_option args = parse_arguments() # Detection模型, 检测文字框 det_model_file = os.path.join(args.det_model, "inference.pdmodel") det_params_file = os.path.join(args.det_model, "inference.pdiparams") # Classification模型,方向分类,可选 cls_model_file = os.path.join(args.cls_model, "inference.pdmodel") cls_params_file = os.path.join(args.cls_model, "inference.pdiparams") # Recognition模型,文字识别模型 rec_model_file = os.path.join(args.rec_model, "inference.pdmodel") rec_params_file = os.path.join(args.rec_model, "inference.pdiparams") rec_label_file = args.rec_label_file # 对于三个模型,均采用同样的部署配置 # 用户也可根据自己的需求,个性化配置 det_option, cls_option, rec_option = build_option(args) det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_option) cls_model = fd.vision.ocr.Classifier( cls_model_file, cls_params_file, runtime_option=cls_option) rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option) # 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None ppocr_v2 = fd.vision.ocr.PPOCRv2( det_model=det_model, cls_model=cls_model, rec_model=rec_model) # 给cls和rec模型设置推理时的batch size # 此值能为-1, 和1到正无穷 # 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同 ppocr_v2.cls_batch_size = args.cls_bs ppocr_v2.rec_batch_size = args.rec_bs # 预测图片准备 im = cv2.imread(args.image) #预测并打印结果 result = ppocr_v2.predict(im) print(result) # 可视化结果 vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")