// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/ocr/ppocr/classifier.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h" namespace fastdeploy { namespace vision { namespace ocr { Classifier::Classifier() {} Classifier::Classifier(const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const ModelFormat& model_format) { if (model_format == ModelFormat::ONNX) { valid_cpu_backends = {Backend::ORT, Backend::OPENVINO}; valid_gpu_backends = {Backend::ORT, Backend::TRT}; } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO, Backend::LITE}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; valid_ascend_backends = {Backend::LITE}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool Classifier::Initialize() { if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } return true; } bool Classifier::Predict(const cv::Mat& img, int32_t* cls_label, float* cls_score) { std::vector cls_labels(1); std::vector cls_scores(1); bool success = BatchPredict({img}, &cls_labels, &cls_scores); if(!success){ return success; } *cls_label = cls_labels[0]; *cls_score = cls_scores[0]; return true; } bool Classifier::BatchPredict(const std::vector& images, std::vector* cls_labels, std::vector* cls_scores) { return BatchPredict(images, cls_labels, cls_scores, 0, images.size()); } bool Classifier::BatchPredict(const std::vector& images, std::vector* cls_labels, std::vector* cls_scores, size_t start_index, size_t end_index) { size_t total_size = images.size(); std::vector fd_images = WrapMat(images); if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index, end_index)) { FDERROR << "Failed to preprocess the input image." << std::endl; return false; } reused_input_tensors_[0].name = InputInfoOfRuntime(0).name; if (!Infer(reused_input_tensors_, &reused_output_tensors_)) { FDERROR << "Failed to inference by runtime." << std::endl; return false; } if (!postprocessor_.Run(reused_output_tensors_, cls_labels, cls_scores, start_index, total_size)) { FDERROR << "Failed to postprocess the inference cls_results by runtime." << std::endl; return false; } return true; } } // namesapce ocr } // namespace vision } // namespace fastdeploy