// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/runtime.h" namespace fastdeploy { /*! @brief Base model object for all the vision models */ class FASTDEPLOY_DECL FastDeployModel { public: /// Get model's name virtual std::string ModelName() const { return "NameUndefined"; } /** \brief Inference the model by the runtime. This interface is included in the `Predict()` function, so we don't call `Infer()` directly in most common situation */ virtual bool Infer(std::vector& input_tensors, std::vector* output_tensors); /** \brief Inference the model by the runtime. This interface is using class member reused_input_tensors_ to do inference and writing results to reused_output_tensors_ */ virtual bool Infer(); RuntimeOption runtime_option; /** \brief Model's valid cpu backends. This member defined all the cpu backends have successfully tested for the model */ std::vector valid_cpu_backends = {Backend::ORT}; /** Model's valid gpu backends. This member defined all the gpu backends have successfully tested for the model */ std::vector valid_gpu_backends = {Backend::ORT}; /** Model's valid ipu backends. This member defined all the ipu backends have successfully tested for the model */ std::vector valid_ipu_backends = {}; /** Model's valid timvx backends. This member defined all the timvx backends have successfully tested for the model */ std::vector valid_timvx_backends = {}; /** Model's valid ascend backends. This member defined all the cann backends have successfully tested for the model */ std::vector valid_ascend_backends = {}; /** Model's valid KunlunXin xpu backends. This member defined all the KunlunXin xpu backends have successfully tested for the model */ std::vector valid_xpu_backends = {}; /** Model's valid hardware backends. This member defined all the gpu backends have successfully tested for the model */ std::vector valid_rknpu_backends = {}; /// Get number of inputs for this model virtual int NumInputsOfRuntime() { return runtime_->NumInputs(); } /// Get number of outputs for this model virtual int NumOutputsOfRuntime() { return runtime_->NumOutputs(); } /// Get input information for this model virtual TensorInfo InputInfoOfRuntime(int index) { return runtime_->GetInputInfo(index); } /// Get output information for this model virtual TensorInfo OutputInfoOfRuntime(int index) { return runtime_->GetOutputInfo(index); } /// Check if the model is initialized successfully virtual bool Initialized() const { return runtime_initialized_ && initialized; } /** \brief This is a debug interface, used to record the time of backend runtime * * example code @code * auto model = fastdeploy::vision::PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml"); * if (!model.Initialized()) { * std::cerr << "Failed to initialize." << std::endl; * return -1; * } * model.EnableRecordTimeOfRuntime(); * cv::Mat im = cv::imread("test.jpg"); * for (auto i = 0; i < 1000; ++i) { * fastdeploy::vision::DetectionResult result; * model.Predict(&im, &result); * } * model.PrintStatisInfoOfRuntime(); * @endcode After called the `PrintStatisInfoOfRuntime()`, the statistical information of runtime will be printed in the console */ virtual void EnableRecordTimeOfRuntime() { time_of_runtime_.clear(); std::vector().swap(time_of_runtime_); enable_record_time_of_runtime_ = true; } /** \brief Disable to record the time of backend runtime, see `EnableRecordTimeOfRuntime()` for more detail */ virtual void DisableRecordTimeOfRuntime() { enable_record_time_of_runtime_ = false; } /** \brief Print the statistic information of runtime in the console, see function `EnableRecordTimeOfRuntime()` for more detail */ virtual std::map PrintStatisInfoOfRuntime(); /** \brief Check if the `EnableRecordTimeOfRuntime()` method is enabled. */ virtual bool EnabledRecordTimeOfRuntime() { return enable_record_time_of_runtime_; } /** \brief Release reused input/output buffers */ virtual void ReleaseReusedBuffer() { std::vector().swap(reused_input_tensors_); std::vector().swap(reused_output_tensors_); } virtual fastdeploy::Runtime* CloneRuntime() { return runtime_->Clone(); } virtual bool SetRuntime(fastdeploy::Runtime* clone_runtime) { runtime_ = std::unique_ptr(clone_runtime); return true; } virtual std::unique_ptr Clone() { FDERROR << ModelName() << " doesn't support Cone() now." << std::endl; return nullptr; } protected: virtual bool InitRuntime(); bool initialized = false; // Reused input tensors std::vector reused_input_tensors_; // Reused output tensors std::vector reused_output_tensors_; private: bool InitRuntimeWithSpecifiedBackend(); bool InitRuntimeWithSpecifiedDevice(); bool CreateCpuBackend(); bool CreateGpuBackend(); bool CreateIpuBackend(); bool CreateRKNPUBackend(); bool CreateTimVXBackend(); bool CreateXPUBackend(); bool CreateASCENDBackend(); std::shared_ptr runtime_; bool runtime_initialized_ = false; // whether to record inference time bool enable_record_time_of_runtime_ = false; // record inference time for backend std::vector time_of_runtime_; }; } // namespace fastdeploy