// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "fastdeploy/backends/backend.h" #include "paddle_api.h" // NOLINT namespace fastdeploy { struct LiteBackendOption { // cpu num threads int threads = 1; // lite power mode // 0: LITE_POWER_HIGH // 1: LITE_POWER_LOW // 2: LITE_POWER_FULL // 3: LITE_POWER_NO_BIND // 4: LITE_POWER_RAND_HIGH // 5: LITE_POWER_RAND_LOW int power_mode = 3; // enable fp16 bool enable_fp16 = false; // enable int8 bool enable_int8 = false; // optimized model dir for CxxConfig std::string optimized_model_dir = ""; // TODO(qiuyanjun): support more options for lite backend. // Such as fp16, different device target (kARM/kXPU/kNPU/...) std::string nnadapter_subgraph_partition_config_path = ""; std::string nnadapter_subgraph_partition_config_buffer = ""; std::string nnadapter_context_properties = ""; std::string nnadapter_model_cache_dir = ""; std::string nnadapter_mixed_precision_quantization_config_path = ""; std::map>> nnadapter_dynamic_shape_info = {{"", {{0}}}}; std::vector nnadapter_device_names = {}; bool enable_timvx = false; bool enable_ascend = false; bool enable_xpu = false; int device_id = 0; int xpu_l3_workspace_size = 0xfffc00; bool xpu_locked = false; bool xpu_autotune = true; std::string xpu_autotune_file = ""; std::string xpu_precision = "int16"; bool xpu_adaptive_seqlen = false; bool xpu_enable_multi_stream = false; }; // Convert data type from paddle lite to fastdeploy FDDataType LiteDataTypeToFD(const paddle::lite_api::PrecisionType& dtype); class LiteBackend : public BaseBackend { public: LiteBackend() {} virtual ~LiteBackend() = default; void BuildOption(const LiteBackendOption& option); bool InitFromPaddle(const std::string& model_file, const std::string& params_file, const LiteBackendOption& option = LiteBackendOption()); bool Infer(std::vector& inputs, std::vector* outputs, bool copy_to_fd = true) override; // NOLINT int NumInputs() const override { return inputs_desc_.size(); } int NumOutputs() const override { return outputs_desc_.size(); } TensorInfo GetInputInfo(int index) override; TensorInfo GetOutputInfo(int index) override; std::vector GetInputInfos() override; std::vector GetOutputInfos() override; private: paddle::lite_api::CxxConfig config_; std::shared_ptr predictor_; std::vector inputs_desc_; std::vector outputs_desc_; std::map inputs_order_; LiteBackendOption option_; bool supported_fp16_ = false; bool ReadFile(const std::string& filename, std::vector* contents, const bool binary = true); }; } // namespace fastdeploy