# 编译ScaledYOLOv4示例 当前支持模型版本为:[ScaledYOLOv4 branch yolov4-large](https://github.com/WongKinYiu/ScaledYOLOv4) ## 获取ONNX文件 - 手动获取 访问[ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)官方github库,按照指引下载安装,下载`scaledyolov4.pt` 模型,利用 `models/export.py` 得到`onnx`格式文件。如果您导出的`onnx`模型出现问题,可以参考[ScaledYOLOv4#401](https://github.com/WongKinYiu/ScaledYOLOv4/issues/401)的解决办法 ``` #下载ScaledYOLOv4模型文件 Download from the goole drive https://drive.google.com/file/d/1aXZZE999sHMP1gev60XhNChtHPRMH3Fz/view?usp=sharing # 导出onnx格式文件 python models/export.py --weights PATH/TO/scaledyolov4-xx-xx-xx.pt --img-size 640 # 移动onnx文件到demo目录 cp PATH/TO/scaledyolov4.onnx PATH/TO/model_zoo/vision/scaledyolov4/ ``` ## 运行demo ``` # 下载和解压预测库 wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz tar xvf fastdeploy-linux-x64-0.0.3.tgz # 编译示例代码 mkdir build & cd build cmake .. make -j # 移动onnx文件到demo目录 cp PATH/TO/scaledyolov4.onnx PATH/TO/model_zoo/vision/scaledyolov4/cpp/build/ # 下载图片 wget https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg # 执行 ./scaledyolov4_demo ``` 执行完后可视化的结果保存在本地`vis_result.jpg`,同时会将检测框输出在终端,如下所示 ``` DetectionResult: [xmin, ymin, xmax, ymax, score, label_id] 665.666321,390.477173, 810.000000, 879.829346, 0.940627, 0 48.266064,396.217163, 247.338425, 901.974915, 0.922277, 0 221.351868,408.446259, 345.524017, 857.927917, 0.910516, 0 14.989746,228.662842, 801.292236, 735.677490, 0.820487, 5 0.000000,548.260864, 75.825439, 873.932495, 0.718777, 0 134.789062,473.950195, 148.526367, 506.777344, 0.513963, 27 ```