// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file softmax_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/softmax.h" #include "poros/util/test_util.h" static void softmax_test_helper(const std::string& graph_IR, std::vector shape = {5}){ std::vector input_data; input_data.push_back(at::randn(shape, {at::kCUDA})); // input_data.push_back(at::randint(0, 5, {5}, {at::kCUDA})); baidu::mirana::poros::PorosOptions poros_option; // default device GPU baidu::mirana::poros::SoftmaxConverter softmaxconverter; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &softmaxconverter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } static std::string gen_softmax_graph(const std::string& dim) { return R"IR( graph(%0 : Tensor): %1 : None = prim::Constant() %2 : int = prim::Constant[value=)IR" + dim + R"IR(]() %3 : Tensor = aten::softmax(%0, %2, %1) return (%3))IR"; } TEST(Converters, ATenSoftmax1DConvertsCorrectly) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("0"); softmax_test_helper(graph_IR, {5}); } TEST(Converters, ATenSoftmaxNDConvertsCorrectlySub3DIndex) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("1"); softmax_test_helper(graph_IR, {1, 2, 3, 4, 5}); } TEST(Converters, ATenSoftmaxNDConvertsCorrectlyAbove3DIndex) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("3"); softmax_test_helper(graph_IR, {1, 2, 3, 4, 5}); } TEST(Converters, ATenSoftmaxNDConvertsCorrectlyNegtiveOneIndex) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("-1"); softmax_test_helper(graph_IR, {1, 2, 3, 4, 5}); } TEST(Converters, ATenSoftmaxNDConvertsCorrectlyNegtiveIndex) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("-2"); softmax_test_helper(graph_IR, {1, 2, 3, 4, 5}); } static void softmax_dy_test_helper(const std::string& graph_IR, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::SoftmaxConverter softmaxconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &softmaxconverter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenSoftmaxInputSingleDimDynamicConvertsCorrectly) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("0"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({60}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({40}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({40}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({40}, {at::kCUDA})); softmax_dy_test_helper(graph_IR, input_data, true, &prewarm_data); } TEST(Converters, ATenSoftmaxDynamicConvertsCorrectly) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("2"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({20, 30, 40, 50}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({10, 20, 30, 40}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({10, 20, 30, 40}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({10, 20, 30, 40}, {at::kCUDA})); softmax_dy_test_helper(graph_IR, input_data, true, &prewarm_data); } TEST(Converters, ATenSoftmaxDynamicNegtiveDimConvertsCorrectly) { // aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor const auto graph_IR = gen_softmax_graph("-2"); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({20, 30, 40, 50}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({10, 20, 30, 40}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({10, 20, 30, 40}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::randn({10, 20, 30, 40}, {at::kCUDA})); softmax_dy_test_helper(graph_IR, input_data, true, &prewarm_data); }