// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file expand_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/expand.h" #include "poros/util/test_util.h" static void expand_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, bool singleInput, std::vector shape1 = {3, 1}, std::vector shape2 = {3, 1}){ std::vector input_data; input_data.push_back(at::randn(shape1, {at::kCUDA})); if (!singleInput){ input_data.push_back(at::randn(shape2, {at::kCUDA})); } baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); // ASSERT_TRUE(baidu::mirana::poros::testutil::almostEqual(graph_output[0], poros_output[0], 2e-6)); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } static std::string gen_expand_graph(const std::string& size, const std::string& implicit) { return R"IR( graph(%0 : Tensor): %1 : int[] = prim::Constant[value=[)IR" + size + R"IR(]]() %2 : bool = prim::Constant[value=)IR" + implicit + R"IR(]() %3 : Tensor = aten::expand(%0, %1, %2) return (%3))IR"; } static std::string gen_repeat_graph(const std::string& size) { return R"IR( graph(%0 : Tensor): %1 : int[] = prim::Constant[value=[)IR" + size + R"IR(]]() %2 : Tensor = aten::repeat(%0, %1) return (%2))IR"; } TEST(Converters, ATenExpandSameDimConvertsCorrectly) { // aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a) const auto graph_IR = gen_expand_graph("3, 4", "0"); baidu::mirana::poros::ExpandConverter expandconverter; expand_test_helper(graph_IR, &expandconverter, true); } TEST(Converters, ATenExpandTileConvertsCorrectly) { // aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a) // 若%2参数个数大于%1,则expand从后向前对齐 // [3,1] [2,3,4] -> [2,3,4] // [3,1] [1,3,4] -> [1,3,4] // [3,1] [3,-1,4] -> [3,3,4] const auto graph_IR = gen_expand_graph("2, 3, 4", "0"); baidu::mirana::poros::ExpandConverter expandconverter; expand_test_helper(graph_IR, &expandconverter, true); } TEST(Converters, ATenExpandTileLastConvertsCorrectly) { // aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a) const auto graph_IR = gen_expand_graph("1, 3, 4", "0"); baidu::mirana::poros::ExpandConverter expandconverter; expand_test_helper(graph_IR, &expandconverter, true); } TEST(Converters, ATenExpandNegativeSizeConvertsCorrectly) { // aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a) // 1 means not changing the size of that dimension const auto graph_IR = gen_expand_graph("3, -1, 4", "0"); baidu::mirana::poros::ExpandConverter expandconverter; expand_test_helper(graph_IR, &expandconverter, true); } TEST(Converters, ATenRepeatConvertsCorrectly) { // aten::repeat(Tensor self, int[] repeats) -> Tensor // output shape计算方法:参数向后对齐(如果%1与%2维度不同的话,同expand),依次相乘 // [3,1] [4,2] -> [12,2] // [2,3,2] [2,2,2] -> [4,6,4] // [3,1] [1,3,2] -> [1,9,2] const auto graph_IR = gen_repeat_graph("4, 2"); baidu::mirana::poros::RepeatConverter repeatconverter; expand_test_helper(graph_IR, &repeatconverter, true); } TEST(Converters, ATenRepeat3dConvertsCorrectly) { // aten::repeat(Tensor self, int[] repeats) -> Tensor const auto graph_IR = gen_repeat_graph("2, 2, 2"); baidu::mirana::poros::RepeatConverter repeatconverter; expand_test_helper(graph_IR, &repeatconverter, true, {2, 3, 2}); } TEST(Converters, ATenRepeatExtraDimsConvertsCorrectly) { // aten::repeat(Tensor self, int[] repeats) -> Tensor const auto graph_IR = gen_repeat_graph("1, 3, 2"); baidu::mirana::poros::RepeatConverter repeatconverter; expand_test_helper(graph_IR, &repeatconverter, true); } static void expand_dynamic_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } TEST(Converters, ATenExpandFromSizedynamicConvertsCorrectly) { // aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a) const auto graph_IR = R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : int = prim::Constant[value=-1]() %3 : int[] = aten::size(%0) %B.1 : int, %H.1 : int, %W.1 : int, %C.1 : int = prim::ListUnpack(%3) %4 : int[] = prim::ListConstruct(%B.1, %2, %C.1) %5 : Tensor = aten::reshape(%0, %4) %6 : int[] = aten::size(%5) %B.2 : int, %N.2 : int, %C.2 : int = prim::ListUnpack(%6) %7 : int[] = prim::ListConstruct(%B.2, %2, %2) %8 : bool = prim::Constant[value=0]() %9 : Tensor = aten::expand(%1, %7, %8) return (%9))IR"; baidu::mirana::poros::ExpandConverter expandconverter; std::vector input_data; input_data.push_back(at::randn({2, 24, 24, 512}, {at::kCUDA})); input_data.push_back(at::randn({1, 1, 512}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 24, 24, 512}, {at::kCUDA})); prewarm_data[0].push_back(at::randn({1, 1, 512}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 24, 24, 512}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({1, 1, 512}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 24, 24, 512}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({1, 1, 512}, {at::kCUDA})); expand_dynamic_test_helper(graph_IR, &expandconverter, input_data, true, &prewarm_data); } /*aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)*/ static std::string gen_expand_as_graph() { return R"IR( graph(%0 : Tensor, %1 : Tensor): %3 : Tensor = aten::expand_as(%0, %1) return (%3))IR"; } TEST(Converters, ATenExpandAsConvertsCorrectly) { /*aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)*/ const auto graph_IR = gen_expand_as_graph(); baidu::mirana::poros::ExpandConverter expandconverter; std::vector input_data; input_data.push_back(at::randn({1, 1, 512}, {at::kCUDA})); input_data.push_back(at::randn({2, 24, 1, 512}, {at::kCUDA})); expand_dynamic_test_helper(graph_IR, &expandconverter, input_data); } TEST(Converters, ATenExpandAsDynamicConvertsCorrectly) { /*aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)*/ const auto graph_IR = gen_expand_as_graph(); baidu::mirana::poros::ExpandConverter expandconverter; std::vector input_data; input_data.push_back(at::randn({1, 1, 512}, {at::kCUDA})); input_data.push_back(at::randn({2, 24, 1, 512}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({1, 1, 512}, {at::kCUDA})); prewarm_data[0].push_back(at::randn({4, 24, 1, 512}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({1, 1, 512}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 24, 1, 512}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({1, 1, 512}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({2, 24, 1, 512}, {at::kCUDA})); expand_dynamic_test_helper(graph_IR, &expandconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenExpandAsDynamicMoreConvertsCorrectly) { /*aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)*/ const auto graph_IR = gen_expand_as_graph(); baidu::mirana::poros::ExpandConverter expandconverter; std::vector input_data; input_data.push_back(at::randn({24, 1, 512}, {at::kCUDA})); input_data.push_back(at::randn({4, 24, 1, 512}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({24, 1, 512}, {at::kCUDA})); prewarm_data[0].push_back(at::randn({4, 24, 1, 512}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({2, 1, 512}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 2, 1, 512}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 1, 512}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 4, 1, 512}, {at::kCUDA})); expand_dynamic_test_helper(graph_IR, &expandconverter, input_data, true, &prewarm_data); }