// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file batch_norm_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/batch_norm.h" #include "poros/util/test_util.h" TEST(Converters, ATenBatchnormalConvertsCorrectly) { // aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor, %1: Tensor, %2: Tensor, %3: Tensor, %4: Tensor): %5 : bool = prim::Constant[value=0]() %6 : float = prim::Constant[value=1.0000000000000001e-05]() %7 : float = prim::Constant[value=0.10000000000000001]() %8 : Tensor = aten::batch_norm(%0, %1, %2, %3, %4, %5, %6, %7, %5) return (%8))IR"; auto in = at::randn({1, 5, 5, 5}, {at::kCUDA}); auto gamma = at::randn({5}, {at::kCUDA}); auto beta = at::randn({5}, {at::kCUDA}); auto mean = at::randn({5}, {at::kCUDA}); auto var = at::randn({5}, {at::kCUDA}).abs(); baidu::mirana::poros::PorosOptions poros_option; // default device GPU baidu::mirana::poros::BatchNormConverter batchnormconverter; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &batchnormconverter, {in, gamma, beta, mean, var}, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } /* aten::instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> Tensor */ TEST(Converters, ATenInstanceNormConvertsCorrectly) { const auto graph_IR = R"IR( graph(%0 : Tensor, %1: Tensor, %2: Tensor): %3 : NoneType = prim::Constant() %4 : bool = prim::Constant[value=1]() %5 : float = prim::Constant[value=0.10000000000000001]() %6 : float = prim::Constant[value=1.0000000000000001e-05]() %7 : Tensor = aten::instance_norm(%0, %1, %2, %3, %3, %4, %5, %6, %4) return (%7))IR"; auto input_tensor = at::randn({2, 10, 5, 5}, {at::kCUDA}); auto weight = at::randn({10}, {at::kCUDA}); auto bias = at::randn({10}, {at::kCUDA}); baidu::mirana::poros::PorosOptions poros_option; // default device GPU baidu::mirana::poros::InstanceNormConverter instancenormconverter; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &instancenormconverter, {input_tensor, weight, bias}, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenInstanceNormConvertsNoWeightCorrectly) { const auto graph_IR = R"IR( graph(%0 : Tensor): %3 : NoneType = prim::Constant() %4 : bool = prim::Constant[value=1]() %5 : float = prim::Constant[value=0.10000000000000001]() %6 : float = prim::Constant[value=1.0000000000000001e-05]() %7 : Tensor = aten::instance_norm(%0, %3, %3, %3, %3, %4, %5, %6, %4) return (%7))IR"; auto input_tensor = at::randn({2, 20, 45, 3}, {at::kCUDA}); baidu::mirana::poros::PorosOptions poros_option; // default device GPU baidu::mirana::poros::InstanceNormConverter instancenormconverter; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &instancenormconverter, {input_tensor}, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenInstanceNormConverts3DCorrectly) { const auto graph_IR = R"IR( graph(%0 : Tensor): %3 : NoneType = prim::Constant() %4 : bool = prim::Constant[value=1]() %5 : float = prim::Constant[value=0.10000000000000001]() %6 : float = prim::Constant[value=1.0000000000000001e-05]() %7 : Tensor = aten::instance_norm(%0, %3, %3, %3, %3, %4, %5, %6, %4) return (%7))IR"; auto input_tensor = at::randn({2, 20, 45}, {at::kCUDA}); baidu::mirana::poros::PorosOptions poros_option; // default device GPU baidu::mirana::poros::InstanceNormConverter instancenormconverter; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &instancenormconverter, {input_tensor}, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); }