// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file add_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/add.h" #include "poros/util/test_util.h" static void add_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, bool singleInput, std::vector shape1 = {5}, std::vector shape2 = {5}){ std::vector input_data; input_data.push_back(at::randn(shape1, {at::kCUDA})); if (!singleInput){ input_data.push_back(at::randn(shape2, {at::kCUDA})); } baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } static std::string gen_add_sub_tensor_graph(const std::string& op, const std::string& alpha) { return R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : float = prim::Constant[value=)IR" + alpha + R"IR(]() %3 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2) return (%3))IR"; } static std::string gen_add_sub_scalar_graph(const std::string& op, const std::string& scalar, const std::string& alpha) { return R"IR( graph(%0 : Tensor): %1 : float = prim::Constant[value=)IR" + scalar + R"IR(]() %2 : float = prim::Constant[value=)IR" + alpha + R"IR(]() %3 : Tensor = aten::)IR" + op + R"IR((%0, %1, %2) return (%3))IR"; } TEST(Converters, ATenAddTensorConvertsCorrectly) { // aten::add.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_tensor_graph("add", "1.0"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, false); add_test_helper(graph_IR, &addconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &addconverter, false, {4}, {3, 4}); add_test_helper(graph_IR, &addconverter, false, {4, 1}, {1, 4}); add_test_helper(graph_IR, &addconverter, false, {3, 4, 3}, {4, 3}); add_test_helper(graph_IR, &addconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenAddScalarConvertsCorrectly) { // aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_scalar_graph("add", "2.2", "1.0"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, true); add_test_helper(graph_IR, &addconverter, true, {3, 4, 3}); } TEST(Converters, ATenAdd_TensorConvertsCorrectly) { // aten::add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_tensor_graph("add_", "1.0"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, false); add_test_helper(graph_IR, &addconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &addconverter, false, {3, 4, 3}, {4, 3}); } TEST(Converters, ATenAdd_ScalarConvertsCorrectly) { // aten::add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_scalar_graph("add_", "2.2", "1.0"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, true); add_test_helper(graph_IR, &addconverter, true, {3, 4, 3}); } TEST(Converters, ATenAddTensorAlphaConvertsCorrectly) { // aten::add.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_tensor_graph("add", "2.5"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, false); add_test_helper(graph_IR, &addconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &addconverter, false, {4}, {3, 4}); add_test_helper(graph_IR, &addconverter, false, {4, 1}, {1, 4}); add_test_helper(graph_IR, &addconverter, false, {3, 4, 3}, {4, 3}); add_test_helper(graph_IR, &addconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenAddScalarAlphaConvertsCorrectly) { // aten::add.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_scalar_graph("add", "2.2", "2.5"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, true); add_test_helper(graph_IR, &addconverter, true, {3, 4, 3}); } TEST(Converters, ATenAdd_TensorAlphaConvertsCorrectly) { // aten::add_.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_tensor_graph("add_", "2.5"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, false); add_test_helper(graph_IR, &addconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &addconverter, false, {3, 4, 3}, {4, 3}); } TEST(Converters, ATenAdd_ScalarAlphaConvertsCorrectly) { // aten::add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_scalar_graph("add_", "2.2", "2.5"); baidu::mirana::poros::AddConverter addconverter; add_test_helper(graph_IR, &addconverter, true); add_test_helper(graph_IR, &addconverter, true, {3, 4, 3}); } TEST(Converters, ATenSubTensorConvertsCorrectly) { // aten::sub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_tensor_graph("sub", "1.0"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, false); add_test_helper(graph_IR, &subconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &subconverter, false, {4}, {3, 4}); add_test_helper(graph_IR, &subconverter, false, {4, 1}, {1, 4}); add_test_helper(graph_IR, &subconverter, false, {3, 4, 3}, {4, 3}); add_test_helper(graph_IR, &subconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenSubScalarConvertsCorrectly) { // aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_scalar_graph("sub", "2.2", "1.0"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, true); add_test_helper(graph_IR, &subconverter, true, {3, 4, 3}); } TEST(Converters, ATenSub_TensorConvertsCorrectly) { // aten::sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_tensor_graph("sub_", "1.0"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, false); add_test_helper(graph_IR, &subconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &subconverter, false, {3, 4, 3}, {4, 3}); } TEST(Converters, ATenSub_ScalarConvertsCorrectly) { // aten::sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_scalar_graph("sub_", "2.2", "1.0"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, true); add_test_helper(graph_IR, &subconverter, true, {3, 4, 3}); } TEST(Converters, ATenSubTensorAlphaConvertsCorrectly) { // aten::sub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_tensor_graph("sub", "2.5"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, false); add_test_helper(graph_IR, &subconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &subconverter, false, {4}, {3, 4}); add_test_helper(graph_IR, &subconverter, false, {4, 1}, {1, 4}); add_test_helper(graph_IR, &subconverter, false, {3, 4, 3}, {4, 3}); add_test_helper(graph_IR, &subconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenSubScalarAlphaConvertsCorrectly) { // aten::sub.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_scalar_graph("sub", "2.2", "2.5"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, true); add_test_helper(graph_IR, &subconverter, true, {3, 4, 3}); } TEST(Converters, ATenSub_TensorAlphaConvertsCorrectly) { // aten::sub_.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> Tensor const auto graph_IR = gen_add_sub_tensor_graph("sub_", "2.5"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, false); add_test_helper(graph_IR, &subconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &subconverter, false, {3, 4, 3}, {4, 3}); } TEST(Converters, ATenSub_ScalarAlphaConvertsCorrectly) { // aten::sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) const auto graph_IR = gen_add_sub_scalar_graph("sub_", "2.2", "2.5"); baidu::mirana::poros::SubConverter subconverter; add_test_helper(graph_IR, &subconverter, true); add_test_helper(graph_IR, &subconverter, true, {3, 4, 3}); } TEST(Converters, ATenRsubTensorConvertsCorrectly) { // aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) const auto graph_IR = gen_add_sub_tensor_graph("rsub", "1.0"); baidu::mirana::poros::RsubConverter rsubconverter; add_test_helper(graph_IR, &rsubconverter, false); add_test_helper(graph_IR, &rsubconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &rsubconverter, false, {4}, {3, 4}); add_test_helper(graph_IR, &rsubconverter, false, {4, 1}, {1, 4}); add_test_helper(graph_IR, &rsubconverter, false, {3, 4, 3}, {4, 3}); add_test_helper(graph_IR, &rsubconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenRsubScalarConvertsCorrectly) { // aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) const auto graph_IR = gen_add_sub_scalar_graph("rsub", "2.2", "1.0"); baidu::mirana::poros::RsubConverter rsubconverter; add_test_helper(graph_IR, &rsubconverter, true); add_test_helper(graph_IR, &rsubconverter, true, {3, 4, 3}); } TEST(Converters, ATenRsubTensorAlphaConvertsCorrectly) { // aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) const auto graph_IR = gen_add_sub_tensor_graph("rsub", "3.33"); baidu::mirana::poros::RsubConverter rsubconverter; add_test_helper(graph_IR, &rsubconverter, false); add_test_helper(graph_IR, &rsubconverter, false, {3, 4}, {4}); add_test_helper(graph_IR, &rsubconverter, false, {4}, {3, 4}); add_test_helper(graph_IR, &rsubconverter, false, {4, 1}, {1, 4}); add_test_helper(graph_IR, &rsubconverter, false, {3, 4, 3}, {4, 3}); add_test_helper(graph_IR, &rsubconverter, false, {4, 3}, {3, 4, 3}); } TEST(Converters, ATenRsubScalarAlphaConvertsCorrectly) { // aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) const auto graph_IR = gen_add_sub_scalar_graph("rsub", "2.2", "4.44"); baidu::mirana::poros::RsubConverter rsubconverter; add_test_helper(graph_IR, &rsubconverter, true); add_test_helper(graph_IR, &rsubconverter, true, {3, 4, 3}); } TEST(Converters, ATenRsubTensorTypePromotionConvertsCorrectly) { // aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : float = prim::Constant[value=3.33]() %3 : Tensor = aten::rsub(%0, %1, %2) return (%3))IR"; baidu::mirana::poros::RsubConverter rsubconverter; std::vector input_data; input_data.push_back(at::randn({3,4,3}, {at::kCUDA})); input_data.push_back(at::ones({3,4,3}, {at::kCUDA}).to(at::ScalarType::Int)); baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &rsubconverter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); } TEST(Converters, ATenRsubScalarTypePromotionConvertsCorrectly) { // aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=5]() %2 : float = prim::Constant[value=3.33]() %3 : Tensor = aten::rsub(%0, %1, %2) return (%3))IR"; baidu::mirana::poros::RsubConverter rsubconverter; add_test_helper(graph_IR, &rsubconverter, true); } static void add_sub_dynamic_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, const std::vector& input_data, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } TEST(Converters, ATenAddIntdynamicConvertsCorrectly) { // aten::add.int(int a, int b) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %5 : int = aten::add(%3, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::AddConverter addconverter; std::vector input_data; input_data.push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); add_sub_dynamic_test_helper(graph_IR, &addconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenSubIntdynamicConvertsCorrectly) { // aten::sub.int(int a, int b) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : int = prim::Constant[value=0]() %2 : int = prim::Constant[value=1]() %3 : int = aten::size(%0, %1) %4 : int = aten::size(%0, %2) %5 : int = aten::sub(%3, %4) %6 : Tensor = aten::add(%0, %5, %2) return (%6))IR"; baidu::mirana::poros::SubConverter subconverter; std::vector input_data; input_data.push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); add_sub_dynamic_test_helper(graph_IR, &subconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenAddTdynamicConvertsCorrectly) { // aten::add.t(t[] a, t[] b) -> (t[]) const auto graph_IR = R"IR( graph(%0 : Tensor, %1 : Tensor): %2 : int[] = aten::size(%0) %3 : int[] = aten::size(%1) %4 : int[] = aten::add(%2, %3) %5 : int = prim::Constant[value=2]() %6 : int = aten::__getitem__(%4, %5) %7 : int = prim::Constant[value=1]() %8 : Tensor = aten::add(%0, %6, %7) return (%8))IR"; baidu::mirana::poros::AddConverter addconverter; std::vector input_data; input_data.push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); input_data.push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[0].push_back(at::zeros({6, 7}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[1].push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({2, 3}, {at::kCUDA}).to(at::ScalarType::Int)); prewarm_data[2].push_back(at::zeros({4, 5}, {at::kCUDA}).to(at::ScalarType::Int)); add_sub_dynamic_test_helper(graph_IR, &addconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenAddTensordynamicConvertsCorrectly) { //dynamic tensor const auto graph_IR = gen_add_sub_tensor_graph("add", "1.0"); baidu::mirana::poros::AddConverter addconverter; std::vector input_data; input_data.push_back(at::randn({15, 1}, {at::kCUDA})); input_data.push_back(at::randn({300}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({40, 1}, {at::kCUDA})); prewarm_data[0].push_back(at::randn({300}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({8, 1}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({300}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({20, 1}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({300}, {at::kCUDA})); add_sub_dynamic_test_helper(graph_IR, &addconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenAddTensordynamicMoreConvertsCorrectly) { //dynamic tensor const auto graph_IR = gen_add_sub_tensor_graph("add", "1.0"); baidu::mirana::poros::AddConverter addconverter; std::vector input_data; input_data.push_back(at::randn({4, 1}, {at::kCUDA})); input_data.push_back(at::randn({300}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({4, 1}, {at::kCUDA})); prewarm_data[0].push_back(at::randn({400}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 1}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({100}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({4, 1}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({200}, {at::kCUDA})); add_sub_dynamic_test_helper(graph_IR, &addconverter, input_data, true, &prewarm_data); } TEST(Converters, ATenAddTensordynamicMore2ConvertsCorrectly) { //dynamic tensor const auto graph_IR = gen_add_sub_tensor_graph("add", "1.0"); baidu::mirana::poros::AddConverter addconverter; std::vector input_data; input_data.push_back(at::randn({4, 1, 45}, {at::kCUDA})); input_data.push_back(at::randn({300, 1}, {at::kCUDA})); std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({400, 1, 45}, {at::kCUDA})); prewarm_data[0].push_back(at::randn({400, 1}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({4, 1, 45}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({100, 1}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({100, 1, 45}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({200, 1}, {at::kCUDA})); add_sub_dynamic_test_helper(graph_IR, &addconverter, input_data, true, &prewarm_data); }