// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/contrib/yolov7/preprocessor.h" #include "fastdeploy/function/concat.h" namespace fastdeploy { namespace vision { namespace detection { YOLOv7Preprocessor::YOLOv7Preprocessor() { size_ = {640, 640}; padding_value_ = {114.0, 114.0, 114.0}; is_mini_pad_ = false; is_no_pad_ = false; is_scale_up_ = true; stride_ = 32; max_wh_ = 7680.0; } void YOLOv7Preprocessor::LetterBox(FDMat* mat) { float scale = std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width()); if (!is_scale_up_) { scale = std::min(scale, 1.0f); } int resize_h = int(round(mat->Height() * scale)); int resize_w = int(round(mat->Width() * scale)); int pad_w = size_[0] - resize_w; int pad_h = size_[1] - resize_h; if (is_mini_pad_) { pad_h = pad_h % stride_; pad_w = pad_w % stride_; } else if (is_no_pad_) { pad_h = 0; pad_w = 0; resize_h = size_[1]; resize_w = size_[0]; } if (std::fabs(scale - 1.0f) > 1e-06) { Resize::Run(mat, resize_w, resize_h); } if (pad_h > 0 || pad_w > 0) { float half_h = pad_h * 1.0 / 2; int top = int(round(half_h - 0.1)); int bottom = int(round(half_h + 0.1)); float half_w = pad_w * 1.0 / 2; int left = int(round(half_w - 0.1)); int right = int(round(half_w + 0.1)); Pad::Run(mat, top, bottom, left, right, padding_value_); } } bool YOLOv7Preprocessor::Preprocess( FDMat* mat, FDTensor* output, std::map>* im_info) { // Record the shape of image and the shape of preprocessed image (*im_info)["input_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; // yolov7's preprocess steps // 1. letterbox // 2. convert_and_permute(swap_rb=true) LetterBox(mat); std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f}; std::vector beta = {0.0f, 0.0f, 0.0f}; ConvertAndPermute::Run(mat, alpha, beta, true); // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; mat->ShareWithTensor(output); output->ExpandDim(0); // reshape to n, c, h, w return true; } bool YOLOv7Preprocessor::Run( std::vector* images, std::vector* outputs, std::vector>>* ims_info) { if (images->size() == 0) { FDERROR << "The size of input images should be greater than 0." << std::endl; return false; } ims_info->resize(images->size()); outputs->resize(1); // Concat all the preprocessed data to a batch tensor std::vector tensors(images->size()); for (size_t i = 0; i < images->size(); ++i) { if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } } if (tensors.size() == 1) { (*outputs)[0] = std::move(tensors[0]); } else { function::Concat(tensors, &((*outputs)[0]), 0); } return true; } } // namespace detection } // namespace vision } // namespace fastdeploy