// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "flags.h" #include "macros.h" #include "option.h" DEFINE_string(rec_label_file, "", "Path of Recognization label file of PPOCR."); int main(int argc, char* argv[]) { #if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) // Initialization auto option = fastdeploy::RuntimeOption(); if (!CreateRuntimeOption(&option, argc, argv, true)) { return -1; } auto im = cv::imread(FLAGS_image); // Recognition Model auto rec_model_file = FLAGS_model + sep + "inference.pdmodel"; auto rec_params_file = FLAGS_model + sep + "inference.pdiparams"; if (FLAGS_backend == "paddle_trt") { option.paddle_infer_option.collect_trt_shape = true; } if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") { option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320}, {8, 3, 48, 2304}); } auto model_ppocr_rec = fastdeploy::vision::ocr::Recognizer( rec_model_file, rec_params_file, FLAGS_rec_label_file, option); std::string text; float rec_score; // Run once at least model_ppocr_rec.Predict(im, &text, &rec_score); // 1. Test result diff std::cout << "=============== Test result diff =================\n"; std::string text_expect = "上海斯格威铂尔大酒店"; float res_score_expect = 0.993308; // Calculate diff between two results. auto ppocr_rec_text_diff = text.compare(text_expect); auto ppocr_rec_score_diff = rec_score - res_score_expect; std::cout << "PPOCR Rec text diff: " << ppocr_rec_text_diff << std::endl; std::cout << "PPOCR Rec score diff: " << abs(ppocr_rec_score_diff) << std::endl; BENCHMARK_MODEL(model_ppocr_rec, model_ppocr_rec.Predict(im, &text, &rec_score)); #endif return 0; }