""" # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations import re from functools import partial import paddle from paddle import nn from paddleformers.transformers import PretrainedModel from paddleformers.utils.log import logger from fastdeploy.config import FDConfig from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.model_executor.graph_optimization.decorator import ( support_graph_optimization, ) from fastdeploy.model_executor.layers.activation import SiluAndMul from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding from fastdeploy.model_executor.layers.linear import ( MergedColumnParallelLinear, ReplicatedLinear, RowParallelLinear, ) from fastdeploy.model_executor.layers.lm_head import ParallelLMHead from fastdeploy.model_executor.layers.moe.moe import FusedMoE from fastdeploy.model_executor.layers.normalization import RMSNorm from fastdeploy.model_executor.models.model_base import ModelForCasualLM from fastdeploy.model_executor.models.qwen3 import Qwen3Attention class Qwen3MoeBlock(nn.Layer): def __init__( self, fd_config: FDConfig, layer_id: int, prefix: str = "", ) -> None: super().__init__() self.expert_parallel_size = fd_config.parallel_config.expert_parallel_size self.tensor_parallel_size = fd_config.parallel_config.tensor_parallel_size self.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank self.tp_group = fd_config.parallel_config.tp_group self.use_ep = self.expert_parallel_size > 1 self.us_tp = self.tensor_parallel_size > 1 weight_key_map = { "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight", "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight", } self.experts = FusedMoE( fd_config, moe_intermediate_size=fd_config.model_config.moe_intermediate_size, num_experts=fd_config.model_config.num_experts, top_k=fd_config.model_config.num_experts_per_tok, layer_idx=layer_id, weight_key_map=weight_key_map, ) self.gate = ReplicatedLinear( fd_config=fd_config, prefix=f"{prefix}.gate", input_size=fd_config.model_config.hidden_size, output_size=fd_config.model_config.num_experts, with_bias=False, skip_quant=True, weight_dtype="float32", ) def split_allgather_out(self, hidden_states: paddle.Tensor, token_num: int): token_num_per_rank = (token_num + self.tensor_parallel_size - 1) // self.tensor_parallel_size # AllGather will hang when the data shapes on multi-ranks are different! part_hidden_states = paddle.zeros( shape=[token_num_per_rank, hidden_states.shape[1]], dtype=hidden_states.dtype ) start_offset = self.tensor_parallel_rank * token_num_per_rank end_offset = (self.tensor_parallel_rank + 1) * token_num_per_rank if end_offset > token_num: end_offset = token_num part_hidden_states[: (end_offset - start_offset), :] = hidden_states[start_offset:end_offset, :] out = self.experts(part_hidden_states, self.gate) multi_outs = [] paddle.distributed.all_gather(multi_outs, out, self.tp_group) out = paddle.concat(multi_outs, axis=0) out = out[:token_num, :] return out def forward(self, x): token_num = x.shape[0] if self.use_ep and self.use_tp and token_num >= self.tensor_parallel_size: out = self.split_allgather_out(x, token_num) else: out = self.experts(x, self.gate) return out def load_state_dict(self, state_dict): """ """ self.gate.load_state_dict(state_dict) self.experts.load_state_dict(state_dict) class Qwen3MLP(nn.Layer): """ """ def __init__( self, fd_config: FDConfig, prefix: str = "", ) -> None: super().__init__() self.nranks = fd_config.parallel_config.tensor_parallel_size self.up_gate_proj = MergedColumnParallelLinear( fd_config, prefix=f"{prefix}.up_gate_proj", input_size=fd_config.model_config.hidden_size, output_size=fd_config.model_config.intermediate_size * 2, with_bias=False, activation=fd_config.model_config.hidden_act, ) self.down_proj = RowParallelLinear( fd_config, prefix=f"{prefix}.down_proj", input_size=fd_config.model_config.intermediate_size, output_size=fd_config.model_config.hidden_size, with_bias=False, ) self.act_fn = SiluAndMul( fd_config, bias=getattr(self.up_gate_proj, "bias", None), act_method=fd_config.model_config.hidden_act, ) def load_state_dict(self, state_dict): """ """ self.up_gate_proj.load_state_dict(state_dict) self.down_proj.load_state_dict(state_dict) def forward(self, x): """ """ gate_up_out = self.up_gate_proj(x) act_out = self.act_fn(gate_up_out) down_out = self.down_proj(act_out) return down_out class Qwen3DecoderLayer(nn.Layer): """ """ def __init__( self, fd_config: FDConfig, prefix: str = "", ) -> None: super().__init__() layer_id = int(prefix.split(sep=".")[-1]) self.self_attn = Qwen3Attention( fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}.self_attn", ) mlp_only_layers = ( [] if not hasattr(fd_config.model_config, "mlp_only_layers") else fd_config.model_config.mlp_only_layers ) if (layer_id not in mlp_only_layers) and ( fd_config.model_config.num_experts > 0 and (layer_id + 1) % fd_config.model_config.decoder_sparse_step == 0 ): self.mlp = Qwen3MoeBlock(fd_config, layer_id, prefix=f"{prefix}.mlp") else: self.mlp = Qwen3MLP( fd_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-6, prefix=f"{prefix}.input_layernorm", ) self.post_attention_layernorm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-6, prefix=f"{prefix}.post_attention_layernorm", ) def load_state_dict(self, state_dict): """ """ self.self_attn.load_state_dict(state_dict) self.mlp.load_state_dict(state_dict) self.input_layernorm.load_state_dict(state_dict) self.post_attention_layernorm.load_state_dict(state_dict) def forward( self, forward_meta: ForwardMeta, hidden_states: paddle.Tensor, residual: paddle.Tensor = None, ): """ """ if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( hidden_states=hidden_states, forward_meta=forward_meta, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_graph_optimization class Qwen3MoeModel(nn.Layer): """ """ def __init__( self, fd_config: FDConfig = None, ): """ Initializer for the Qwen2Model class. Args: """ super().__init__() self.num_layers = fd_config.model_config.num_hidden_layers fd_config.model_config.pretrained_config.prefix_name = "model" self.embed_tokens = VocabParallelEmbedding( fd_config, num_embeddings=fd_config.model_config.vocab_size, embedding_dim=fd_config.model_config.hidden_size, params_dtype=paddle.get_default_dtype, prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"), ) self.layers = nn.LayerList( [ Qwen3DecoderLayer( fd_config, prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}", ) for i in range(self.num_layers) ] ) self.norm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-6, prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm", ) def load_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.embed_tokens.load_state_dict(state_dict) self.norm.load_state_dict(state_dict) for i in range(self.num_layers): logger.info(f"Start load layer {i}") self.layers[i].load_state_dict(state_dict) def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding) residual = None for i in range(self.num_layers): hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual) hidden_states = hidden_states + residual out = self.norm(hidden_states) return out class Qwen3MoeForCausalLM(ModelForCasualLM): """ Qwen3MoeForCausalLM """ def __init__(self, fd_config: FDConfig): """ Args: fd_config (FDConfig): Configurations for the LLM model. """ super(Qwen3MoeForCausalLM, self).__init__(fd_config) self.model = Qwen3MoeModel(fd_config) self.ori_vocab_size = fd_config.model_config.ori_vocab_size self.lm_head = ParallelLMHead( fd_config, embedding_dim=fd_config.model_config.hidden_size, num_embeddings=fd_config.model_config.vocab_size, prefix="lm_head", ) @classmethod def name(self): """ """ return "Qwen3MoeForCausalLM" def get_expert_mapping( self, ) -> list[tuple[str, str, int, str]]: # (param_name, weight_name, expert_id, shard_id) return FusedMoE.make_expert_params_mapping( num_experts=self.fd_config.model_config.num_experts, ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", param_gate_up_proj_name="experts.up_gate_proj_", param_down_proj_name="experts.down_proj_", ) @paddle.no_grad() def load_weights(self, weights_iterator) -> None: """ Load model parameters from a given weights_iterator object. Args: weights_iterator (Iterator): An iterator yielding (name, weight) pairs. """ from fastdeploy.model_executor.utils import ( default_weight_loader, process_weights_after_loading, ) stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("up_gate_proj", "gate_proj", "gate"), ("up_gate_proj", "up_proj", "up"), ("embed_tokens.embeddings", "embed_tokens", None), ("lm_head.linear", "lm_head", None), ] expert_params_mapping = self.get_expert_mapping() params_dict = dict(self.named_parameters()) process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers())) for loaded_weight_name, loaded_weight in weights_iterator: for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in loaded_weight_name: continue if "mlp.experts" in loaded_weight_name: continue model_param_name = loaded_weight_name.replace(weight_name, param_name) if model_param_name not in params_dict: continue param = params_dict[model_param_name] weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config)) weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in loaded_weight_name: continue model_param_name = loaded_weight_name.replace(weight_name, param_name) if model_param_name not in params_dict: continue param = params_dict[model_param_name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id) break else: model_param_name = loaded_weight_name if model_param_name not in params_dict: continue param = params_dict[model_param_name] weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config)) weight_loader(param, loaded_weight) model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name) process_weights_after_loading_fn(model_sublayer_name, param) @paddle.no_grad() def set_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.model.load_state_dict(state_dict) self.lm_head.load_state_dict(state_dict) def compute_logits(self, hidden_states: paddle.Tensor): """ """ logits = self.lm_head(hidden_states) logits = paddle.cast(logits, paddle.float32) logits[:, self.ori_vocab_size :] = -float("inf") return logits def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta) return hidden_states def clear_grpah_opt_backend(self): """Clear graph optimization bakcend, the captured cuda graph will be cleaned""" self.model.clear_grpah_opt_backend(fd_config=self.fd_config) class Qwen3MoePretrainedModel(PretrainedModel): """ Qwen3MoePretrainedModel """ config_class = FDConfig def _init_weight(self, layer): """ _init_weight """ return None @classmethod def arch_name(self): return "Qwen3MoeForCausalLM" @classmethod def _get_tensor_parallel_mappings(cls, config, is_split=True): # TODO not support TP split now, next PR will support TP. from paddleformers.transformers.conversion_utils import split_or_merge_func fn = split_or_merge_func( is_split=is_split, tensor_parallel_degree=config.tensor_parallel_degree, tensor_parallel_rank=config.tensor_parallel_rank, num_attention_heads=config.num_attention_heads, ) def get_tensor_parallel_split_mappings(num_layers, num_experts): final_actions = {} base_actions = { "lm_head.weight": partial(fn, is_column=True), # Row Linear "embed_tokens.weight": partial(fn, is_column=False), "layers.0.self_attn.o_proj.weight": partial(fn, is_column=False), } # Column Linear config.fuse_attention_qkv = False if config.fuse_attention_qkv: base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(fn, is_column=True) else: base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True) # if we have enough num_key_value_heads to split, then split it. if config.num_key_value_heads % config.tensor_parallel_degree == 0: base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.k_proj.bias"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.v_proj.bias"] = partial(fn, is_column=True) for key, action in base_actions.items(): if "layers.0." in key: for i in range(num_layers): final_actions[key.replace("layers.0.", f"layers.{i}.")] = action final_actions[key] = action base_actions = { "layers.0.mlp.experts.0.gate_proj.weight": partial(fn, is_column=True), "layers.0.mlp.experts.0.down_proj.weight": partial(fn, is_column=False), "layers.0.mlp.experts.0.up_proj.weight": partial(fn, is_column=True), } for key, action in base_actions.items(): for i in range(num_layers): newkey = key.replace("layers.0.", f"layers.{i}.") for j in range(num_experts): newkey2 = newkey.replace("experts.0.", f"experts.{j}.") final_actions[newkey2] = action return final_actions num_experts = 0 if isinstance(config.num_experts, list): num_experts = sum(config.num_experts) elif isinstance(config.num_experts, int): num_experts = config.num_experts else: raise ValueError(f"Not support type of num_experts [{type(config.num_experts)}]") mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers, num_experts) return mappings