# PaddleSeg 模型部署 ## 模型版本说明 - [PaddleSeg develop](https://github.com/PaddlePaddle/PaddleSeg/tree/develop) 目前FastDeploy支持如下模型的部署 - [U-Net系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/unet/README.md) - [PP-LiteSeg系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/pp_liteseg/README.md) - [PP-HumanSeg系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/contrib/PP-HumanSeg/README.md) - [FCN系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/fcn/README.md) - [DeepLabV3系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/deeplabv3/README.md) 【注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../matting) ## 准备PaddleSeg部署模型 PaddleSeg模型导出,请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/docs/model_export_cn.md) **注意** - PaddleSeg导出的模型包含`model.pdmodel`、`model.pdiparams`和`deploy.yaml`三个文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息 - aarch64平台(如:Jetson)暂时只支持`onnxruntime`和`tensorrt`作为后端推理(**不支持**非固定shape的图片输入即动态输入)。因此,**必须指定**`--input_shape`导出具有固定输入的PaddleSeg模型(FastDeploy会在预处理阶段,对原图进行resize操作) - 在使用其他平台(如:Windows、Mac、Linux),在导出PaddleSeg模型模型时,可指定`--input_shape`参数(当想采用`onnxruntime`或`tensorrt`作为后端进行推理)。但是,若输入的预测图片尺寸并不固定,建议使用默认值即**不指定**该参数(同时采用Paddle Inference或者OpenVino作为后端进行推理) ## 下载预训练模型 为了方便开发者的测试,下面提供了PaddleSeg导出的部分模型(导出方式为:**不指定**`--input_shape`,**指定**`--output_op none`),开发者可直接下载使用。 | 模型 | 参数文件大小 |输入Shape | mIoU | mIoU (flip) | mIoU (ms+flip) | |:---------------------------------------------------------------- |:----- |:----- | :----- | :----- | :----- | | [Unet-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz) | 52MB | 1024x512 | 65.00% | 66.02% | 66.89% | | [PP-LiteSeg-T(STDC1)-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz) | 31MB | 1024x512 |77.04% | 77.73% | 77.46% | | [PP-HumanSegV1-Lite(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Lite_infer.tgz) | 543KB | 192x192 | 86.2% | - | - | | [PP-HumanSegV2-Lite(通用人像分割模型)](https://bj.bcebos.com/paddle2onnx/libs/PP_HumanSegV2_Lite_192x192_infer.tgz) | 12MB | 192x192 | 92.52% | - | - | | [PP-HumanSegV2-Mobile(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Mobile_192x192_infer.tgz) | 29MB | 192x192 | 93.13% | - | - | | [PP-HumanSegV1-Server(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_infer.tgz) | 103MB | 512x512 | 96.47% | - | - | | [Portait-PP-HumanSegV2_Lite(肖像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_infer.tgz) | 3.6M | 256x144 | 96.63% | - | - | | [FCN-HRNet-W18-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_without_argmax_infer.tgz) | 37MB | 1024x512 | 78.97% | 79.49% | 79.74% | | [Deeplabv3-ResNet101-OS8-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Deeplabv3_ResNet101_OS8_cityscapes_without_argmax_infer.tgz) | 150MB | 1024x512 | 79.90% | 80.22% | 80.47% | ## 详细部署文档 - [Python部署](python) - [C++部署](cpp)