import fastdeploy as fd import cv2 import os from fastdeploy import ModelFormat def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of yolov5 onnx model.") parser.add_argument( "--image", required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--backend", type=str, default="default", help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu" ) parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") parser.add_argument( "--cpu_thread_num", type=int, default=9, help="Number of threads while inference on CPU.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu(0) option.set_cpu_thread_num(args.cpu_thread_num) if args.backend.lower() == "trt": assert args.device.lower( ) == "gpu", "TensorRT backend require inference on device GPU." option.use_trt_backend() elif args.backend.lower() == "pptrt": assert args.device.lower( ) == "gpu", "TensorRT backend require inference on device GPU." option.use_trt_backend() option.enable_paddle_to_trt() elif args.backend.lower() == "ort": option.use_ort_backend() elif args.backend.lower() == "paddle": option.use_paddle_backend() elif args.backend.lower() == "openvino": assert args.device.lower( ) == "cpu", "OpenVINO backend require inference on device CPU." option.use_openvino_backend() return option args = parse_arguments() model_file = os.path.join(args.model, "model.pdmodel") params_file = os.path.join(args.model, "model.pdiparams") # 配置runtime,加载模型 runtime_option = build_option(args) model = fd.vision.detection.YOLOv5( model_file, params_file, runtime_option=runtime_option, model_format=ModelFormat.PADDLE) # 预测图片检测结果 im = cv2.imread(args.image) result = model.predict(im.copy()) print(result) # 预测结果可视化 vis_im = fd.vision.vis_detection(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")