// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* 3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others) Written by Shaoshuai Shi All Rights Reserved 2019-2020. */ #if defined(WITH_GPU) #include #include #include "iou3d_nms.h" namespace fastdeploy { namespace paddle_custom_ops { #define CHECK_INPUT(x) PD_CHECK(x.is_gpu(), #x " must be a GPU Tensor.") // #define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0)) static inline int DIVUP(const int m, const int n) { return ((m) / (n) + ((m) % (n) > 0)); } #define CHECK_ERROR(ans) \ { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true) { if (code != cudaSuccess) { fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } #define D(x) \ PD_THROW('\n', x, \ "\n--------------------------------- where is the error ? " \ "---------------------------------------\n"); static const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8; void boxesoverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap); void boxesioubevLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou); void nmsLauncher(const float *boxes, unsigned long long *mask, int boxes_num, float nms_overlap_thresh); void nmsNormalLauncher(const float *boxes, unsigned long long *mask, int boxes_num, float nms_overlap_thresh); int boxes_overlap_bev_gpu(paddle::Tensor boxes_a, paddle::Tensor boxes_b, paddle::Tensor ans_overlap) { // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] // params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] // params ans_overlap: (N, M) CHECK_INPUT(boxes_a); CHECK_INPUT(boxes_b); CHECK_INPUT(ans_overlap); int num_a = boxes_a.shape()[0]; int num_b = boxes_b.shape()[0]; const float *boxes_a_data = boxes_a.data(); const float *boxes_b_data = boxes_b.data(); float *ans_overlap_data = ans_overlap.data(); boxesoverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data); return 1; } int boxes_iou_bev_gpu(paddle::Tensor boxes_a, paddle::Tensor boxes_b, paddle::Tensor ans_iou) { // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] // params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] // params ans_overlap: (N, M) CHECK_INPUT(boxes_a); CHECK_INPUT(boxes_b); CHECK_INPUT(ans_iou); int num_a = boxes_a.shape()[0]; int num_b = boxes_b.shape()[0]; const float *boxes_a_data = boxes_a.data(); const float *boxes_b_data = boxes_b.data(); float *ans_iou_data = ans_iou.data(); boxesioubevLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_iou_data); return 1; } std::vector nms_gpu(const paddle::Tensor &boxes, float nms_overlap_thresh) { // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading] // params keep: (N) CHECK_INPUT(boxes); // CHECK_CONTIGUOUS(keep); auto keep = paddle::empty({boxes.shape()[0]}, paddle::DataType::INT32, paddle::CPUPlace()); auto num_to_keep_tensor = paddle::empty({1}, paddle::DataType::INT32, paddle::CPUPlace()); int *num_to_keep_data = num_to_keep_tensor.data(); int boxes_num = boxes.shape()[0]; const float *boxes_data = boxes.data(); int *keep_data = keep.data(); int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS); unsigned long long *mask_data = NULL; CHECK_ERROR(cudaMalloc((void **)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long))); nmsLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh); // unsigned long long mask_cpu[boxes_num * col_blocks]; // unsigned long long *mask_cpu = new unsigned long long [boxes_num * // col_blocks]; std::vector mask_cpu(boxes_num * col_blocks); // printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks); CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long), cudaMemcpyDeviceToHost)); cudaFree(mask_data); // WARN(qiuyanjun): codes below will throw a compile error on windows with // msvc. Thus, we choosed to use std::vectored to store the result instead. // unsigned long long remv_cpu[col_blocks]; // memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long)); std::vector remv_cpu(col_blocks, 0); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / THREADS_PER_BLOCK_NMS; int inblock = i % THREADS_PER_BLOCK_NMS; if (!(remv_cpu[nblock] & (1ULL << inblock))) { keep_data[num_to_keep++] = i; unsigned long long *p = &mask_cpu[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv_cpu[j] |= p[j]; } } } num_to_keep_data[0] = num_to_keep; if (cudaSuccess != cudaGetLastError()) printf("Error!\n"); return {keep, num_to_keep_tensor}; } int nms_normal_gpu(paddle::Tensor boxes, paddle::Tensor keep, float nms_overlap_thresh) { // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading] // params keep: (N) CHECK_INPUT(boxes); // CHECK_CONTIGUOUS(keep); int boxes_num = boxes.shape()[0]; const float *boxes_data = boxes.data(); // WARN(qiuyanjun): long type for Tensor::data() API is not exported by paddle, // it will raise some link error on windows with msvc. Please check: // https://github.com/PaddlePaddle/Paddle/blob/release/2.5/paddle/phi/api/lib/tensor.cc #if defined(_WIN32) int *keep_data = keep.data(); #else long *keep_data = keep.data(); #endif int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS); unsigned long long *mask_data = NULL; CHECK_ERROR(cudaMalloc((void **)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long))); nmsNormalLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh); // unsigned long long mask_cpu[boxes_num * col_blocks]; // unsigned long long *mask_cpu = new unsigned long long [boxes_num * // col_blocks]; std::vector mask_cpu(boxes_num * col_blocks); // printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks); CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long), cudaMemcpyDeviceToHost)); cudaFree(mask_data); // WARN(qiuyanjun): codes below will throw a compile error on windows with // msvc. Thus, we choosed to use std::vectored to store the result instead. // unsigned long long remv_cpu[col_blocks]; // memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long)); std::vector remv_cpu(col_blocks, 0); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / THREADS_PER_BLOCK_NMS; int inblock = i % THREADS_PER_BLOCK_NMS; if (!(remv_cpu[nblock] & (1ULL << inblock))) { keep_data[num_to_keep++] = i; unsigned long long *p = &mask_cpu[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv_cpu[j] |= p[j]; } } } if (cudaSuccess != cudaGetLastError()) printf("Error!\n"); return num_to_keep; } } // namespace fastdeploy } // namespace paddle_custom_ops #endif