// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* 3D Rotated IoU Calculation (CPU) Written by Shaoshuai Shi All Rights Reserved 2020. */ #include "iou3d_cpu.h" #include #include #include namespace fastdeploy { namespace paddle_custom_ops { static inline float min(float a, float b) { return a > b ? b : a; } static inline float max(float a, float b) { return a > b ? a : b; } #if defined(_WIN32) #if defined(EPS) #undef EPS #endif #define EPS 1e-8 #else static const float EPS = 1e-8; #endif struct Point { float x, y; Point() {} Point(double _x, double _y) { x = _x, y = _y; } void set(float _x, float _y) { x = _x; y = _y; } Point operator+(const Point &b) const { return Point(x + b.x, y + b.y); } Point operator-(const Point &b) const { return Point(x - b.x, y - b.y); } }; static inline float cross(const Point &a, const Point &b) { return a.x * b.y - a.y * b.x; } static inline float cross(const Point &p1, const Point &p2, const Point &p0) { return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y); } static inline int check_rect_cross(const Point &p1, const Point &p2, const Point &q1, const Point &q2) { int ret = min(p1.x, p2.x) <= max(q1.x, q2.x) && min(q1.x, q2.x) <= max(p1.x, p2.x) && min(p1.y, p2.y) <= max(q1.y, q2.y) && min(q1.y, q2.y) <= max(p1.y, p2.y); return ret; } static inline int check_in_box2d(const float *box, const Point &p) { // params: (7) [x, y, z, dx, dy, dz, heading] const float MARGIN = 1e-2; float center_x = box[0], center_y = box[1]; float angle_cos = cos(-box[6]), angle_sin = sin(-box[6]); // rotate the point in the opposite direction of box float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * (-angle_sin); float rot_y = (p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos; return (fabs(rot_x) < box[3] / 2 + MARGIN && fabs(rot_y) < box[4] / 2 + MARGIN); } static inline int intersection(const Point &p1, const Point &p0, const Point &q1, const Point &q0, Point &ans) { // fast exclusion if (check_rect_cross(p0, p1, q0, q1) == 0) return 0; // check cross standing float s1 = cross(q0, p1, p0); float s2 = cross(p1, q1, p0); float s3 = cross(p0, q1, q0); float s4 = cross(q1, p1, q0); if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0; // calculate intersection of two lines float s5 = cross(q1, p1, p0); if (fabs(s5 - s1) > EPS) { ans.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1); ans.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1); } else { float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y; float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y; float D = a0 * b1 - a1 * b0; ans.x = (b0 * c1 - b1 * c0) / D; ans.y = (a1 * c0 - a0 * c1) / D; } return 1; } static inline void rotate_around_center(const Point ¢er, const float angle_cos, const float angle_sin, Point &p) { float new_x = (p.x - center.x) * angle_cos + (p.y - center.y) * (-angle_sin) + center.x; float new_y = (p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y; p.set(new_x, new_y); } static inline int point_cmp(const Point &a, const Point &b, const Point ¢er) { return atan2(a.y - center.y, a.x - center.x) > atan2(b.y - center.y, b.x - center.x); } static inline float box_overlap(const float *box_a, const float *box_b) { // params: box_a (7) [x, y, z, dx, dy, dz, heading] // params: box_b (7) [x, y, z, dx, dy, dz, heading] // float a_x1 = box_a[0], a_y1 = box_a[1], a_x2 = box_a[2], a_y2 = // box_a[3], a_angle = box_a[4]; // float b_x1 = box_b[0], b_y1 = box_b[1], b_x2 = box_b[2], b_y2 = // box_b[3], b_angle = box_b[4]; float a_angle = box_a[6], b_angle = box_b[6]; float a_dx_half = box_a[3] / 2, b_dx_half = box_b[3] / 2, a_dy_half = box_a[4] / 2, b_dy_half = box_b[4] / 2; float a_x1 = box_a[0] - a_dx_half, a_y1 = box_a[1] - a_dy_half; float a_x2 = box_a[0] + a_dx_half, a_y2 = box_a[1] + a_dy_half; float b_x1 = box_b[0] - b_dx_half, b_y1 = box_b[1] - b_dy_half; float b_x2 = box_b[0] + b_dx_half, b_y2 = box_b[1] + b_dy_half; Point center_a(box_a[0], box_a[1]); Point center_b(box_b[0], box_b[1]); Point box_a_corners[5]; box_a_corners[0].set(a_x1, a_y1); box_a_corners[1].set(a_x2, a_y1); box_a_corners[2].set(a_x2, a_y2); box_a_corners[3].set(a_x1, a_y2); Point box_b_corners[5]; box_b_corners[0].set(b_x1, b_y1); box_b_corners[1].set(b_x2, b_y1); box_b_corners[2].set(b_x2, b_y2); box_b_corners[3].set(b_x1, b_y2); // get oriented corners float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle); float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle); for (int k = 0; k < 4; k++) { rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]); rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]); } box_a_corners[4] = box_a_corners[0]; box_b_corners[4] = box_b_corners[0]; // get intersection of lines Point cross_points[16]; Point poly_center; int cnt = 0, flag = 0; poly_center.set(0, 0); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { flag = intersection(box_a_corners[i + 1], box_a_corners[i], box_b_corners[j + 1], box_b_corners[j], cross_points[cnt]); if (flag) { poly_center = poly_center + cross_points[cnt]; cnt++; } } } // check corners for (int k = 0; k < 4; k++) { if (check_in_box2d(box_a, box_b_corners[k])) { poly_center = poly_center + box_b_corners[k]; cross_points[cnt] = box_b_corners[k]; cnt++; } if (check_in_box2d(box_b, box_a_corners[k])) { poly_center = poly_center + box_a_corners[k]; cross_points[cnt] = box_a_corners[k]; cnt++; } } poly_center.x /= cnt; poly_center.y /= cnt; // sort the points of polygon Point temp; for (int j = 0; j < cnt - 1; j++) { for (int i = 0; i < cnt - j - 1; i++) { if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)) { temp = cross_points[i]; cross_points[i] = cross_points[i + 1]; cross_points[i + 1] = temp; } } } // get the overlap areas float area = 0; for (int k = 0; k < cnt - 1; k++) { area += cross(cross_points[k] - cross_points[0], cross_points[k + 1] - cross_points[0]); } return fabs(area) / 2.0; } static inline float iou_bev(const float *box_a, const float *box_b) { // params: box_a (7) [x, y, z, dx, dy, dz, heading] // params: box_b (7) [x, y, z, dx, dy, dz, heading] float sa = box_a[3] * box_a[4]; float sb = box_b[3] * box_b[4]; float s_overlap = box_overlap(box_a, box_b); return s_overlap / fmaxf(sa + sb - s_overlap, EPS); } int boxes_iou_bev_cpu(paddle::Tensor boxes_a_tensor, paddle::Tensor boxes_b_tensor, paddle::Tensor ans_iou_tensor) { // params boxes_a_tensor: (N, 7) [x, y, z, dx, dy, dz, heading] // params boxes_b_tensor: (M, 7) [x, y, z, dx, dy, dz, heading] // params ans_iou_tensor: (N, M) // CHECK_CONTIGUOUS(boxes_a_tensor); // CHECK_CONTIGUOUS(boxes_b_tensor); int num_boxes_a = boxes_a_tensor.shape()[0]; int num_boxes_b = boxes_b_tensor.shape()[0]; const float *boxes_a = boxes_a_tensor.data(); const float *boxes_b = boxes_b_tensor.data(); float *ans_iou = ans_iou_tensor.data(); for (int i = 0; i < num_boxes_a; i++) { for (int j = 0; j < num_boxes_b; j++) { ans_iou[i * num_boxes_b + j] = iou_bev(boxes_a + i * 7, boxes_b + j * 7); } } return 1; } } // namespace fastdeploy } // namespace paddle_custom_ops