// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/backends/openvino/ov_backend.h" namespace fastdeploy { std::vector PartialShapeToVec(const ov::PartialShape& shape) { std::vector res; for (int i = 0; i < shape.size(); ++i) { auto dim = shape[i]; if (dim.is_dynamic()) { res.push_back(-1); } else { res.push_back(dim.get_length()); } } return res; } FDDataType OpenVINODataTypeToFD(const ov::element::Type& type) { if (type == ov::element::f32) { return FDDataType::FP32; } else if (type == ov::element::f64) { return FDDataType::FP64; } else if (type == ov::element::i8) { return FDDataType::INT8; } else if (type == ov::element::i32) { return FDDataType::INT32; } else if (type == ov::element::i64) { return FDDataType::INT64; } else { FDASSERT(false, "Only support float/double/int8/int32/int64 now."); } return FDDataType::FP32; } ov::element::Type FDDataTypeToOV(const FDDataType& type) { if (type == FDDataType::FP32) { return ov::element::f32; } else if (type == FDDataType::FP64) { return ov::element::f64; } else if (type == FDDataType::INT8) { return ov::element::i8; } else if (type == FDDataType::INT32) { return ov::element::i32; } else if (type == FDDataType::INT64) { return ov::element::i64; } FDASSERT(false, "Only support float/double/int8/int32/int64 now."); return ov::element::f32; } bool OpenVINOBackend::InitFromPaddle(const std::string& model_file, const std::string& params_file, const OpenVINOBackendOption& option) { if (initialized_) { FDERROR << "OpenVINOBackend is already initlized, cannot initialize again." << std::endl; return false; } option_ = option; ov::AnyMap properties; if (option_.cpu_thread_num > 0) { properties["INFERENCE_NUM_THREADS"] = option_.cpu_thread_num; } std::shared_ptr model = core_.read_model(model_file, params_file); // Get inputs/outputs information from loaded model const std::vector> inputs = model->inputs(); for (size_t i = 0; i < inputs.size(); ++i) { TensorInfo info; auto partial_shape = PartialShapeToVec(inputs[i].get_partial_shape()); info.shape.assign(partial_shape.begin(), partial_shape.end()); info.name = inputs[i].get_any_name(); info.dtype = OpenVINODataTypeToFD(inputs[i].get_element_type()); input_infos_.emplace_back(info); } const std::vector> outputs = model->outputs(); for (size_t i = 0; i < outputs.size(); ++i) { TensorInfo info; auto partial_shape = PartialShapeToVec(outputs[i].get_partial_shape()); info.shape.assign(partial_shape.begin(), partial_shape.end()); info.name = outputs[i].get_any_name(); info.dtype = OpenVINODataTypeToFD(outputs[i].get_element_type()); output_infos_.emplace_back(info); } compiled_model_ = core_.compile_model(model, "CPU", properties); request_ = compiled_model_.create_infer_request(); initialized_ = true; return true; } TensorInfo OpenVINOBackend::GetInputInfo(int index) { FDASSERT(index < NumInputs(), "The index: %d should less than the number of outputs: %d.", index, NumOutputs()); return input_infos_[index]; } TensorInfo OpenVINOBackend::GetOutputInfo(int index) { FDASSERT(index < NumOutputs(), "The index: %d should less than the number of outputs: %d.", index, NumOutputs()); return output_infos_[index]; } bool OpenVINOBackend::InitFromOnnx(const std::string& model_file, const OpenVINOBackendOption& option) { if (initialized_) { FDERROR << "OpenVINOBackend is already initlized, cannot initialize again." << std::endl; return false; } option_ = option; ov::AnyMap properties; if (option_.cpu_thread_num > 0) { properties["INFERENCE_NUM_THREADS"] = option_.cpu_thread_num; } std::shared_ptr model = core_.read_model(model_file); // Get inputs/outputs information from loaded model const std::vector> inputs = model->inputs(); for (size_t i = 0; i < inputs.size(); ++i) { TensorInfo info; auto partial_shape = PartialShapeToVec(inputs[i].get_partial_shape()); info.shape.assign(partial_shape.begin(), partial_shape.end()); info.name = inputs[i].get_any_name(); info.dtype = OpenVINODataTypeToFD(inputs[i].get_element_type()); input_infos_.emplace_back(info); } const std::vector> outputs = model->outputs(); for (size_t i = 0; i < outputs.size(); ++i) { TensorInfo info; auto partial_shape = PartialShapeToVec(outputs[i].get_partial_shape()); info.shape.assign(partial_shape.begin(), partial_shape.end()); info.name = outputs[i].get_any_name(); info.dtype = OpenVINODataTypeToFD(outputs[i].get_element_type()); output_infos_.emplace_back(info); } compiled_model_ = core_.compile_model(model, "CPU", properties); request_ = compiled_model_.create_infer_request(); initialized_ = true; return true; } int OpenVINOBackend::NumInputs() const { return input_infos_.size(); } int OpenVINOBackend::NumOutputs() const { return output_infos_.size(); } bool OpenVINOBackend::Infer(std::vector& inputs, std::vector* outputs) { if (inputs.size() != input_infos_.size()) { FDERROR << "[OpenVINOBackend] Size of the inputs(" << inputs.size() << ") should keep same with the inputs of this model(" << input_infos_.size() << ")." << std::endl; return false; } for (size_t i = 0; i < inputs.size(); ++i) { ov::Shape shape(inputs[i].shape.begin(), inputs[i].shape.end()); ov::Tensor ov_tensor(FDDataTypeToOV(inputs[i].dtype), shape, inputs[i].Data()); request_.set_tensor(inputs[i].name, ov_tensor); } request_.infer(); outputs->resize(output_infos_.size()); for (size_t i = 0; i < output_infos_.size(); ++i) { auto out_tensor = request_.get_output_tensor(i); auto out_tensor_shape = out_tensor.get_shape(); std::vector shape(out_tensor_shape.begin(), out_tensor_shape.end()); (*outputs)[i].Allocate(shape, OpenVINODataTypeToFD(out_tensor.get_element_type()), output_infos_[i].name); memcpy((*outputs)[i].MutableData(), out_tensor.data(), (*outputs)[i].Nbytes()); } return true; } } // namespace fastdeploy