# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model_file", required=True, help="Path of PaddleSeg model.") parser.add_argument( "--config_file", required=True, help="Path of PaddleSeg config.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() option.use_rknpu2() return option args = parse_arguments() # 配置runtime,加载模型 runtime_option = build_option(args) model_file = args.model_file params_file = "" config_file = args.config_file model = fd.vision.segmentation.PaddleSegModel( model_file, params_file, config_file, runtime_option=runtime_option, model_format=fd.ModelFormat.RKNN) model.disable_normalize_and_permute() # 预测图片分割结果 im = cv2.imread(args.image) result = model.predict(im.copy()) print(result) # 可视化结果 vis_im = fd.vision.vis_segmentation(im, result, weight=0.5) cv2.imwrite("vis_img.png", vis_im)