# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from fastdeploy.model_executor.ops.gpu import top_k_renorm_probs class TestTopKRenormProbs(unittest.TestCase): def setUp(self): paddle.set_device("gpu") np.random.seed(42) def _check_output(self, probs, top_k): probs_tensor = paddle.to_tensor(probs) top_k_tensor = paddle.to_tensor(top_k) renorm_probs = top_k_renorm_probs(probs_tensor, top_k_tensor).numpy() self.assertEqual(renorm_probs.shape, probs.shape) batch_size, vocab_size = probs.shape for b in range(batch_size): self.assertAlmostEqual(renorm_probs[b].sum(), 1.0, places=6) top_indices = np.argsort(probs[b])[::-1][: top_k[b]] for j in range(vocab_size): if j not in top_indices: self.assertAlmostEqual(renorm_probs[b, j], 0.0, places=6) def test_single_batch_basic(self): """Test with batch_size = 1""" probs = np.random.rand(1, 5).astype("float32") probs /= probs.sum(axis=1, keepdims=True) top_k = np.array([2], dtype="int64") self._check_output(probs, top_k) def test_single_batch_edge_cases(self): """Test edge cases with batch_size = 1""" probs = np.array([[0.1, 0.3, 0.4, 0.2]], dtype="float32") # top_k = 1 self._check_output(probs, np.array([1], dtype="int64")) # top_k = vocab_size renorm_probs = top_k_renorm_probs( paddle.to_tensor(probs), paddle.to_tensor(np.array([4], dtype="int64")) ).numpy() np.testing.assert_allclose(renorm_probs, probs, rtol=1e-6, atol=1e-6) def test_batch_size_two(self): """Test with batch_size = 2""" probs = np.random.rand(2, 5).astype("float32") probs /= probs.sum(axis=1, keepdims=True) top_k = np.array([2, 3], dtype="int64") self._check_output(probs, top_k) def test_batch_size_three(self): """Test with batch_size = 3""" probs = np.random.rand(3, 6).astype("float32") probs /= probs.sum(axis=1, keepdims=True) top_k = np.array([1, 2, 4], dtype="int64") self._check_output(probs, top_k) if __name__ == "__main__": unittest.main()