English | [简体中文](README_CN.md) # PP-Tracking C++ Deployment Example This directory provides examples that `infer.cc` fast finishes the deployment of PP-Tracking on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) Taking the PP-Tracking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model. ```bash mkdir build cd build # Download the FastDeploy precompiled library. Users can choose your appropriate version in the`FastDeploy Precompiled Library` mentioned above wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download PP-Tracking model files and test videos wget https://bj.bcebos.com/paddlehub/fastdeploy/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz tar -xvf fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4 # CPU inference ./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 0 # GPU inference ./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 1 # TensorRT Inference on GPU ./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 2 ``` The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md) ## PP-Tracking C++ Interface ### PPTracking Class ```c++ fastdeploy::vision::tracking::PPTracking( const string& model_file, const string& params_file = "", const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE) ``` PP-Tracking model loading and initialization, among which model_file is the exported Paddle model format. **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path > * **config_file**(str): Inference deployment configuration file > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. Paddle format by default #### Predict Function > ```c++ > PPTracking::Predict(cv::Mat* im, MOTResult* result) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **im**: Input images in HWC or BGR format > > * **result**: Detection results, including detection box, tracking id, confidence of each box, and object class id. Refer to [visual model prediction results](../../../../../docs/api/vision_results/) for the description of MOTResult - [Model Description](../../) - [Python Deployment](../python) - [Vision Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)