English | [简体中文](README_CN.md) # YOLOX Python Deployment Example Two steps before deployment - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of YOLOX on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/detection/yolox/python/ # Download YOLOX model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s.onnx wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # CPU inference python infer.py --model yolox_s.onnx --image 000000014439.jpg --device cpu # GPU inference python infer.py --model yolox_s.onnx --image 000000014439.jpg --device gpu # TensorRT inference on GPU (TensorRT in SDK. No need Separate installation) python infer.py --model yolox_s.onnx --image 000000014439.jpg --device gpu --use_trt True ``` The visualized result after running is as follows ## YOLOX Python Interface ```python fastdeploy.vision.detection.YOLOX(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX) ``` YOLOX model loading and initialization, among which model_file is the exported ONNX model format **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default ### predict function > ```python > YOLOX.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) > ``` > > Model prediction interface. Input images and output results > > **Parameter** > > > * **image_data**(np.ndarray): Input data in HWC or BGR format > > * **conf_threshold**(float): Filtering threshold of detection box confidence > > * **nms_iou_threshold**(float): iou threshold during NMS processing > **Return** > > > Return `fastdeploy.vision.DetectionResult` structure, refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description ### Class Member Property #### Pre-processing Parameter Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results > >* **size**(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [640, 640] > >* **padding_value**(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default [114, 114, 114] > >* **is_decode_exported**(bool): The default value is `is_decode_exported=False`. The official default export does not have the decoded part. If you export the model with the decoded part, please set this parameter to true ## Other Documents - [YOLOX Model Description](..) - [YOLOX C++ Deployment](../cpp) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)