English | [简体中文](README_CN.md) # ScaledYOLOv4 Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of ScaledYOLOv4 on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/detection/scaledyolov4/python/ # Download scaledyolov4 model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/scaled_yolov4-p5.onnx wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # CPU inference python infer.py --model scaled_yolov4-p5.onnx --image 000000014439.jpg --device cpu # GPU inference python infer.py --model scaled_yolov4-p5.onnx --image 000000014439.jpg --device gpu # TensorRT inference on GPU python infer.py --model scaled_yolov4-p5.onnx --image 000000014439.jpg --device gpu --use_trt True ``` The visualized result after running is as follows ## ScaledYOLOv4 Python Interface ```python fastdeploy.vision.detection.ScaledYOLOv4(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX) ``` ScaledYOLOv4 model loading and initialization, among which model_file is the exported ONNX model format **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default ### predict function > ```python > ScaledYOLOv4.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **image_data**(np.ndarray): Input data in HWC or BGR format > > * **conf_threshold**(float): Filtering threshold of detection box confidence > > * **nms_iou_threshold**(float): iou threshold during NMS processing > **Return** > > > Return `fastdeploy.vision.DetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description. ### Class Member Property #### Pre-processing Parameter Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results > > * **size**(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640] > > * **padding_value**(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default value [114, 114, 114] > > * **is_no_pad**(bool): Specify whether to resize the image through padding. `is_no_pad=True` represents no paddling. Default `is_no_pad=False` > > * **is_mini_pad**(bool): This parameter sets the width and height of the image after resize to the value nearest to the `size` member variable and to the point where the padded pixel size is divisible by the `stride` member variable. Default `is_mini_pad=False` > > * **stride**(int): Used with the `stris_mini_padide` member variable. Default `stride=32` ## Other Documents - [ScaledYOLOv4 Model Description](..) - [ScaledYOLOv4 C++ Deployment](../cpp) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)