import cv2 import os import fastdeploy as fd def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", default=None, help="Path of PaddleDetection model directory") parser.add_argument( "--image", default=None, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'kunlunxin', 'cpu' or 'gpu'.") parser.add_argument( "--use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "kunlunxin": option.use_kunlunxin() if args.device.lower() == "ascend": option.use_ascend() if args.device.lower() == "gpu": option.use_gpu() if args.use_trt: option.use_trt_backend() return option args = parse_arguments() if args.model_dir is None: model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco') else: model_dir = args.model_dir model_file = os.path.join(model_dir, "model.pdmodel") params_file = os.path.join(model_dir, "model.pdiparams") config_file = os.path.join(model_dir, "infer_cfg.yml") # 配置runtime,加载模型 runtime_option = build_option(args) model = fd.vision.detection.PPYOLOE( model_file, params_file, config_file, runtime_option=runtime_option) # 预测图片检测结果 if args.image is None: image = fd.utils.get_detection_test_image() else: image = args.image im = cv2.imread(image) result = model.predict(im) print(result) # 预测结果可视化 vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")