English | [简体中文](README_CN.md) # NanoDetPlus Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of NanoDetPlus on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/detection/nanodet_plus/python/ # Download NanoDetPlus model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/nanodet-plus-m_320.onnx wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # CPU inference python infer.py --model nanodet-plus-m_320.onnx --image 000000014439.jpg --device cpu # GPU inference python infer.py --model nanodet-plus-m_320.onnx --image 000000014439.jpg --device gpu # TensorRT inference on GPU python infer.py --model nanodet-plus-m_320.onnx --image 000000014439.jpg --device gpu --use_trt True ``` The visualized result after running is as follows ## NanoDetPlus Python Interface ```python fastdeploy.vision.detection.NanoDetPlus(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX) ``` NanoDetPlus model loading and initialization, among which model_file is the exported ONNX model format **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default ### predict function > ```python > NanoDetPlus.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **image_data**(np.ndarray): Input data in HWC or BGR format > > * **conf_threshold**(float): Filtering threshold of detection box confidence > > * **nms_iou_threshold**(float): iou threshold during NMS processing > **Return** > > > Return `fastdeploy.vision.DetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description. ### Class Member Property #### Pre-processing Parameter Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results > > * **size**(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [320, 320] > > * **padding_value**(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default value [0, 0, 0] > > * **keep_ratio**(bool): Whether to keep the aspect ratio unchanged during resize. Default false > > * **reg_max**(int): The reg_max parameter in GFL regression. Default 7. > > * **downsample_strides**(list[int]): This parameter is used to change the down-sampling multiple of the feature map that generates anchor, containing four integer elements that represent the default down-sampling multiple for generating anchor. Default [8, 16, 32, 64] ## Other Documents - [NanoDetPlus Model Description](..) - [NanoDetPlus C++ Deployment](../cpp) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)