English | [简体中文](README_CN.md) # ResNet Model Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). This directory provides examples that `infer.py` fast finishes the deployment of ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download deployment example code git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/classification/resnet/python # Download the ResNet50_vd model file and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50.onnx wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg # CPU inference python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 # GPU inference python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 # Use TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.) python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 ``` The result returned after running is as follows ```bash ClassifyResult( label_ids: 332, scores: 0.825349, ) ``` ## ResNet Python Interface ```python fd.vision.classification.ResNet(model_file, params_file, runtime_option=None, model_format=ModelFormat.ONNX) ``` **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration) > * **model_format**(ModelFormat): Model format. ONNX format by default ### predict Function > ```python > ResNet.predict(input_image, topk=1) > ``` > > Model prediction interface. Input images and output results directly. > > **parameter** > > > * **input_image**(np.ndarray): Input data in HWC or BGR format > > * **topk**(int): Return the topk classification results with the highest prediction probability. Default 1 > **Return** > > > Return `fastdeploy.vision.ClassifyResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure. ## Other Documents - [ResNet Model Description](..) - [ResNet C++ Deployment](../cpp) - [Model prediction results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)