English | [简体中文](README_CN.md) # ResNet C++ Deployment Example This directory provides examples that `infer.cc` fast finishes the deployment of ResNet models on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation. - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). Taking ResNet50 inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model. ```bash mkdir build cd build # Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download the ResNet50 model file and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50.onnx wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg # CPU inference ./infer_demo resnet50.onnx ILSVRC2012_val_00000010.jpeg 0 # GPU inference ./infer_demo resnet50.onnx ILSVRC2012_val_00000010.jpeg 1 # TensorRT Inference on GPU ./infer_demo resnet50.onnx ILSVRC2012_val_00000010.jpeg 2 ``` The above command works for Linux or MacOS. Refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md) for SDK use-pattern in Windows ## ResNet C++ Interface ### ResNet Class ```c++ fastdeploy::vision::classification::ResNet( const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration) > * **model_format**(ModelFormat): Model format. ONNX format by default #### Predict Function > ```c++ > ResNet::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1) > ``` > > Model prediction interface. Input images and output results directly. > > **Parameter** > > > * **im**: Input images in HWC or BGR format > > * **result**: The classification result, including label_id, and the corresponding confidence. Refer to [Visual Model Prediction Results](../../../../../docs/api/vision_results/) for the description of ClassifyResult > > * **topk**(int): Return the topk classification results with the highest prediction probability. Default 1 - [Model Description](../../) - [Python Deployment](../python) - [Vision Model prediction results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)