English | [简体中文](README_CN.md) # PaddleClas Quantitative Model Python Deployment Example `infer.py` in this directory can help you quickly complete the inference acceleration of PaddleClas quantization model deployment on CPU/GPU. ## Deployment Preparations ### FastDeploy Environment Preparations - 1. For the software and hardware requirements, please refer to [FastDeploy Environment Requirements](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). - 2. For the installation of FastDeploy Python whl package, please refer to [FastDeploy Python Installation](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md). ### Quantized Model Preparations - 1. You can directly use the quantized model provided by FastDeploy for deployment. - 2. You can use [one-click automatical compression tool](../../../../../../tools/common_tools/auto_compression/) provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment.(Note: The quantized classification model still needs the inference_cls.yaml file in the FP32 model folder. Self-quantized model folder does not contain this yaml file, you can copy it from the FP32 model folder to the quantized model folder.) ## Take the Quantized ResNet50_Vd Model as an example for Deployment ```bash # Download sample deployment code. git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/classification/paddleclas/quantize/python # Download the ResNet50_Vd quantized model and test images provided by FastDeloy. wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50_vd_ptq.tar tar -xvf resnet50_vd_ptq.tar wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg # Use ONNX Runtime inference quantization model on CPU. python infer.py --model resnet50_vd_ptq --image ILSVRC2012_val_00000010.jpeg --device cpu --backend ort # Use TensorRT inference quantization model on GPU. python infer.py --model resnet50_vd_ptq --image ILSVRC2012_val_00000010.jpeg --device gpu --backend trt # Use Paddle-TensorRT inference quantization model on GPU. python infer.py --model resnet50_vd_ptq --image ILSVRC2012_val_00000010.jpeg --device gpu --backend pptrt ```