// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void CpuInfer(const std::string& model_dir, const std::string& image_file) { auto model_file = model_dir + sep + "inference.pdmodel"; auto params_file = model_dir + sep + "inference.pdiparams"; auto config_file = model_dir + sep + "inference_cls.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseCpu(); auto model = fastdeploy::vision::classification::PaddleClasModel( model_file, params_file, config_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::ClassifyResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } // print res std::cout << res.Str() << std::endl; } void GpuInfer(const std::string& model_dir, const std::string& image_file) { auto model_file = model_dir + sep + "inference.pdmodel"; auto params_file = model_dir + sep + "inference.pdiparams"; auto config_file = model_dir + sep + "inference_cls.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseGpu(); auto model = fastdeploy::vision::classification::PaddleClasModel( model_file, params_file, config_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::ClassifyResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } // print res std::cout << res.Str() << std::endl; } void IpuInfer(const std::string& model_dir, const std::string& image_file) { auto model_file = model_dir + sep + "inference.pdmodel"; auto params_file = model_dir + sep + "inference.pdiparams"; auto config_file = model_dir + sep + "inference_cls.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseIpu(); auto model = fastdeploy::vision::classification::PaddleClasModel( model_file, params_file, config_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::ClassifyResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } // print res std::cout << res.Str() << std::endl; } void KunlunXinInfer(const std::string& model_dir, const std::string& image_file) { auto model_file = model_dir + sep + "inference.pdmodel"; auto params_file = model_dir + sep + "inference.pdiparams"; auto config_file = model_dir + sep + "inference_cls.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseKunlunXin(); auto model = fastdeploy::vision::classification::PaddleClasModel( model_file, params_file, config_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::ClassifyResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } // print res std::cout << res.Str() << std::endl; } void TrtInfer(const std::string& model_dir, const std::string& image_file) { auto model_file = model_dir + sep + "inference.pdmodel"; auto params_file = model_dir + sep + "inference.pdiparams"; auto config_file = model_dir + sep + "inference_cls.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseGpu(); option.UseTrtBackend(); auto model = fastdeploy::vision::classification::PaddleClasModel( model_file, params_file, config_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::ClassifyResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } // print res std::cout << res.Str() << std::endl; } void AscendInfer(const std::string& model_dir, const std::string& image_file) { auto model_file = model_dir + sep + "inference.pdmodel"; auto params_file = model_dir + sep + "inference.pdiparams"; auto config_file = model_dir + sep + "inference_cls.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseAscend(); auto model = fastdeploy::vision::classification::PaddleClasModel( model_file, params_file, config_file, option); assert(model.Initialized()); auto im = cv::imread(image_file); fastdeploy::vision::ClassifyResult res; if (!model.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } std::cout << res.Str() << std::endl; } int main(int argc, char* argv[]) { if (argc < 4) { std::cout << "Usage: infer_demo path/to/model path/to/image run_option, " "e.g ./infer_demo ./ResNet50_vd ./test.jpeg 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu; 2: run with gpu and use tensorrt backend; 3: run " "with ipu; 4: run with kunlunxin." << std::endl; return -1; } if (std::atoi(argv[3]) == 0) { CpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 1) { GpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 2) { TrtInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 3) { IpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 4) { KunlunXinInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 5) { AscendInfer(argv[1], argv[2]); } return 0; }