// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/contrib/rknpu2/preprocessor.h" #include "fastdeploy/function/concat.h" namespace fastdeploy { namespace vision { namespace detection { RKYOLOPreprocessor::RKYOLOPreprocessor() { size_ = {640, 640}; padding_value_ = {114.0, 114.0, 114.0}; is_mini_pad_ = false; is_no_pad_ = false; is_scale_up_ = true; stride_ = 32; max_wh_ = 7680.0; } void RKYOLOPreprocessor::LetterBox(FDMat* mat) { std::cout << "mat->Height() = " << mat->Height() << std::endl; std::cout << "mat->Width() = " << mat->Width() << std::endl; float scale = std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width()); std::cout << "RKYOLOPreprocessor scale_ = " << scale << std::endl; if (!is_scale_up_) { scale = std::min(scale, 1.0f); } std::cout << "RKYOLOPreprocessor scale_ = " << scale << std::endl; scale_.push_back(scale); int resize_h = int(round(mat->Height() * scale)); int resize_w = int(round(mat->Width() * scale)); int pad_w = size_[0] - resize_w; int pad_h = size_[1] - resize_h; if (is_mini_pad_) { pad_h = pad_h % stride_; pad_w = pad_w % stride_; } else if (is_no_pad_) { pad_h = 0; pad_w = 0; resize_h = size_[1]; resize_w = size_[0]; } pad_hw_values_.push_back({pad_h,pad_w}); if (std::fabs(scale - 1.0f) > 1e-06) { Resize::Run(mat, resize_w, resize_h); } if (pad_h > 0 || pad_w > 0) { float half_h = pad_h * 1.0 / 2; int top = int(round(half_h - 0.1)); int bottom = int(round(half_h + 0.1)); float half_w = pad_w * 1.0 / 2; int left = int(round(half_w - 0.1)); int right = int(round(half_w + 0.1)); Pad::Run(mat, top, bottom, left, right, padding_value_); } } bool RKYOLOPreprocessor::Preprocess(FDMat* mat, FDTensor* output) { // process after image load // float ratio = std::min(size_[1] * 1.0f / static_cast(mat->Height()), // size_[0] * 1.0f / static_cast(mat->Width())); // if (std::fabs(ratio - 1.0f) > 1e-06) { // int interp = cv::INTER_AREA; // if (ratio > 1.0) { // interp = cv::INTER_LINEAR; // } // int resize_h = int(mat->Height() * ratio); // int resize_w = int(mat->Width() * ratio); // Resize::Run(mat, resize_w, resize_h, -1, -1, interp); // } // RKYOLO's preprocess steps // 1. letterbox // 2. convert_and_permute(swap_rb=true) LetterBox(mat); BGR2RGB::Run(mat); mat->ShareWithTensor(output); output->ExpandDim(0); // reshape to n, h, w, c return true; } bool RKYOLOPreprocessor::Run(std::vector* images, std::vector* outputs) { if (images->size() == 0) { FDERROR << "The size of input images should be greater than 0." << std::endl; return false; } outputs->resize(1); // Concat all the preprocessed data to a batch tensor std::vector tensors(images->size()); for (size_t i = 0; i < images->size(); ++i) { if (!Preprocess(&(*images)[i], &tensors[i])) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } } if (tensors.size() == 1) { (*outputs)[0] = std::move(tensors[0]); } else { function::Concat(tensors, &((*outputs)[0]), 0); } return true; } } // namespace detection } // namespace vision } // namespace fastdeploy