/* * Copyright (c) 1993-2022, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include "NvInfer.h" #include "logger.h" #include "sampleOptions.h" namespace sample { namespace { std::vector splitToStringVec(const std::string& option, char separator) { std::vector options; for (size_t start = 0; start < option.length();) { size_t separatorIndex = option.find(separator, start); if (separatorIndex == std::string::npos) { separatorIndex = option.length(); } options.emplace_back(option.substr(start, separatorIndex - start)); start = separatorIndex + 1; } return options; } template T stringToValue(const std::string& option) { return T{option}; } template <> int32_t stringToValue(const std::string& option) { return std::stoi(option); } template <> float stringToValue(const std::string& option) { return std::stof(option); } template <> double stringToValue(const std::string& option) { return std::stod(option); } template <> bool stringToValue(const std::string& option) { return true; } template <> std::vector stringToValue>(const std::string& option) { std::vector shape; std::vector dimsStrings = splitToStringVec(option, 'x'); for (const auto& d : dimsStrings) { shape.push_back(stringToValue(d)); } return shape; } template <> nvinfer1::DataType stringToValue(const std::string& option) { const std::unordered_map strToDT{ {"fp32", nvinfer1::DataType::kFLOAT}, {"fp16", nvinfer1::DataType::kHALF}, {"int8", nvinfer1::DataType::kINT8}, {"int32", nvinfer1::DataType::kINT32}}; const auto& dt = strToDT.find(option); if (dt == strToDT.end()) { throw std::invalid_argument("Invalid DataType " + option); } return dt->second; } template <> nvinfer1::TensorFormats stringToValue(const std::string& option) { std::vector optionStrings = splitToStringVec(option, '+'); const std::unordered_map strToFmt{ {"chw", nvinfer1::TensorFormat::kLINEAR}, {"chw2", nvinfer1::TensorFormat::kCHW2}, {"chw4", nvinfer1::TensorFormat::kCHW4}, {"hwc8", nvinfer1::TensorFormat::kHWC8}, {"chw16", nvinfer1::TensorFormat::kCHW16}, {"chw32", nvinfer1::TensorFormat::kCHW32}, {"dhwc8", nvinfer1::TensorFormat::kDHWC8}, {"hwc", nvinfer1::TensorFormat::kHWC}, {"dla_linear", nvinfer1::TensorFormat::kDLA_LINEAR}, {"dla_hwc4", nvinfer1::TensorFormat::kDLA_HWC4}}; nvinfer1::TensorFormats formats{}; for (auto f : optionStrings) { const auto& tf = strToFmt.find(f); if (tf == strToFmt.end()) { throw std::invalid_argument(std::string("Invalid TensorFormat ") + f); } formats |= 1U << static_cast(tf->second); } return formats; } template <> IOFormat stringToValue(const std::string& option) { IOFormat ioFormat{}; const size_t colon = option.find(':'); if (colon == std::string::npos) { throw std::invalid_argument(std::string("Invalid IOFormat ") + option); } ioFormat.first = stringToValue(option.substr(0, colon)); ioFormat.second = stringToValue(option.substr(colon + 1)); return ioFormat; } template std::pair splitNameAndValue(const std::string& s) { std::string tensorName; std::string valueString; // Split on the last : std::vector nameRange{splitToStringVec(s, ':')}; // Everything before the last : is the name tensorName = nameRange[0]; for (size_t i = 1; i < nameRange.size() - 1; i++) { tensorName += ":" + nameRange[i]; } // Value is the string element after the last : valueString = nameRange[nameRange.size() - 1]; return std::pair(tensorName, stringToValue(valueString)); } template void splitInsertKeyValue(const std::vector& kvList, T& map) { for (const auto& kv : kvList) { map.insert(splitNameAndValue(kv)); } } const char* boolToEnabled(bool enable) { return enable ? "Enabled" : "Disabled"; } //! Check if input option exists in input arguments. //! If it does: return its value, erase the argument and return true. //! If it does not: return false. template bool getAndDelOption(Arguments& arguments, const std::string& option, T& value) { const auto match = arguments.find(option); if (match != arguments.end()) { value = stringToValue(match->second); arguments.erase(match); return true; } return false; } //! Check if input option exists in input arguments. //! If it does: return false in value, erase the argument and return true. //! If it does not: return false. bool getAndDelNegOption(Arguments& arguments, const std::string& option, bool& value) { bool dummy; if (getAndDelOption(arguments, option, dummy)) { value = false; return true; } return false; } //! Check if input option exists in input arguments. //! If it does: add all the matched arg values to values vector, erase the //! argument and return true. //! If it does not: return false. template bool getAndDelRepeatedOption(Arguments& arguments, const std::string& option, std::vector& values) { const auto match = arguments.equal_range(option); if (match.first == match.second) { return false; } auto addToValues = [&values](Arguments::value_type& argValue) { values.emplace_back(stringToValue(argValue.second)); }; std::for_each(match.first, match.second, addToValues); arguments.erase(match.first, match.second); return true; } void insertShapesBuild(std::unordered_map& shapes, nvinfer1::OptProfileSelector selector, const std::string& name, const std::vector& dims) { shapes[name][static_cast(selector)] = dims; } void insertShapesInference( std::unordered_map>& shapes, const std::string& name, const std::vector& dims) { shapes[name] = dims; } std::string removeSingleQuotationMarks(std::string& str) { std::vector strList{splitToStringVec(str, '\'')}; // Remove all the escaped single quotation marks std::string retVal = ""; // Do not really care about unterminated sequences for (size_t i = 0; i < strList.size(); i++) { retVal += strList[i]; } return retVal; } void getLayerPrecisions(Arguments& arguments, char const* argument, LayerPrecisions& layerPrecisions) { std::string list; if (!getAndDelOption(arguments, argument, list)) { return; } // The layerPrecisions flag contains comma-separated layerName:precision // pairs. std::vector precisionList{splitToStringVec(list, ',')}; for (auto const& s : precisionList) { auto namePrecisionPair = splitNameAndValue(s); auto const layerName = removeSingleQuotationMarks(namePrecisionPair.first); layerPrecisions[layerName] = namePrecisionPair.second; } } void getLayerOutputTypes(Arguments& arguments, char const* argument, LayerOutputTypes& layerOutputTypes) { std::string list; if (!getAndDelOption(arguments, argument, list)) { return; } // The layerOutputTypes flag contains comma-separated layerName:types pairs. std::vector precisionList{splitToStringVec(list, ',')}; for (auto const& s : precisionList) { auto namePrecisionPair = splitNameAndValue(s); auto const layerName = removeSingleQuotationMarks(namePrecisionPair.first); auto const typeStrings = splitToStringVec(namePrecisionPair.second, '+'); std::vector typeVec(typeStrings.size(), nvinfer1::DataType::kFLOAT); std::transform(typeStrings.begin(), typeStrings.end(), typeVec.begin(), stringToValue); layerOutputTypes[layerName] = typeVec; } } bool getShapesBuild(Arguments& arguments, std::unordered_map& shapes, char const* argument, nvinfer1::OptProfileSelector selector) { std::string list; bool retVal = getAndDelOption(arguments, argument, list); std::vector shapeList{splitToStringVec(list, ',')}; for (const auto& s : shapeList) { auto nameDimsPair = splitNameAndValue>(s); auto tensorName = removeSingleQuotationMarks(nameDimsPair.first); auto dims = nameDimsPair.second; insertShapesBuild(shapes, selector, tensorName, dims); } return retVal; } bool getShapesInference( Arguments& arguments, std::unordered_map>& shapes, const char* argument) { std::string list; bool retVal = getAndDelOption(arguments, argument, list); std::vector shapeList{splitToStringVec(list, ',')}; for (const auto& s : shapeList) { auto nameDimsPair = splitNameAndValue>(s); auto tensorName = removeSingleQuotationMarks(nameDimsPair.first); auto dims = nameDimsPair.second; insertShapesInference(shapes, tensorName, dims); } return retVal; } void processShapes(std::unordered_map& shapes, bool minShapes, bool optShapes, bool maxShapes, bool calib) { // Only accept optShapes only or all three of minShapes, optShapes, maxShapes if (((minShapes || maxShapes) && !optShapes) // minShapes only, maxShapes // only, both minShapes and // maxShapes || (minShapes && !maxShapes && optShapes) // both minShapes and optShapes || (!minShapes && maxShapes && optShapes)) // both maxShapes and optShapes { if (calib) { throw std::invalid_argument( "Must specify only --optShapesCalib or all of --minShapesCalib, " "--optShapesCalib, --maxShapesCalib"); } else { throw std::invalid_argument( "Must specify only --optShapes or all of --minShapes, --optShapes, " "--maxShapes"); } } // If optShapes only, expand optShapes to minShapes and maxShapes if (optShapes && !minShapes && !maxShapes) { std::unordered_map newShapes; for (auto& s : shapes) { insertShapesBuild( newShapes, nvinfer1::OptProfileSelector::kMIN, s.first, s.second[static_cast(nvinfer1::OptProfileSelector::kOPT)]); insertShapesBuild( newShapes, nvinfer1::OptProfileSelector::kOPT, s.first, s.second[static_cast(nvinfer1::OptProfileSelector::kOPT)]); insertShapesBuild( newShapes, nvinfer1::OptProfileSelector::kMAX, s.first, s.second[static_cast(nvinfer1::OptProfileSelector::kOPT)]); } shapes = newShapes; } } template void printShapes(std::ostream& os, const char* phase, const T& shapes) { if (shapes.empty()) { os << "Input " << phase << " shapes: model" << std::endl; } else { for (const auto& s : shapes) { os << "Input " << phase << " shape: " << s.first << "=" << s.second << std::endl; } } } std::ostream& printBatch(std::ostream& os, int32_t maxBatch) { if (maxBatch != maxBatchNotProvided) { os << maxBatch; } else { os << "explicit batch"; } return os; } std::ostream& printTacticSources(std::ostream& os, nvinfer1::TacticSources enabledSources, nvinfer1::TacticSources disabledSources) { if (!enabledSources && !disabledSources) { os << "Using default tactic sources"; } else { auto const addSource = [&](uint32_t source, std::string const& name) { if (enabledSources & source) { os << name << " [ON], "; } else if (disabledSources & source) { os << name << " [OFF], "; } }; addSource(1U << static_cast(nvinfer1::TacticSource::kCUBLAS), "cublas"); addSource(1U << static_cast(nvinfer1::TacticSource::kCUBLAS_LT), "cublasLt"); addSource(1U << static_cast(nvinfer1::TacticSource::kCUDNN), "cudnn"); } return os; } std::ostream& printPrecision(std::ostream& os, BuildOptions const& options) { os << "FP32"; if (options.fp16) { os << "+FP16"; } if (options.int8) { os << "+INT8"; } if (options.precisionConstraints == PrecisionConstraints::kOBEY) { os << " (obey precision constraints)"; } if (options.precisionConstraints == PrecisionConstraints::kPREFER) { os << " (prefer precision constraints)"; } return os; } std::ostream& printTimingCache(std::ostream& os, BuildOptions const& options) { switch (options.timingCacheMode) { case TimingCacheMode::kGLOBAL: os << "global"; break; case TimingCacheMode::kLOCAL: os << "local"; break; case TimingCacheMode::kDISABLE: os << "disable"; break; } return os; } std::ostream& printSparsity(std::ostream& os, BuildOptions const& options) { switch (options.sparsity) { case SparsityFlag::kDISABLE: os << "Disabled"; break; case SparsityFlag::kENABLE: os << "Enabled"; break; case SparsityFlag::kFORCE: os << "Forced"; break; } return os; } std::ostream& printMemoryPools(std::ostream& os, BuildOptions const& options) { auto const printValueOrDefault = [&os](double const val) { if (val >= 0) { os << val << " MiB"; } else { os << "default"; } }; os << "workspace: "; printValueOrDefault(options.workspace); os << ", "; os << "dlaSRAM: "; printValueOrDefault(options.dlaSRAM); os << ", "; os << "dlaLocalDRAM: "; printValueOrDefault(options.dlaLocalDRAM); os << ", "; os << "dlaGlobalDRAM: "; printValueOrDefault(options.dlaGlobalDRAM); return os; } } // namespace Arguments argsToArgumentsMap(int32_t argc, char* argv[]) { Arguments arguments; for (int32_t i = 1; i < argc; ++i) { auto valuePtr = strchr(argv[i], '='); if (valuePtr) { std::string value{valuePtr + 1}; arguments.emplace(std::string(argv[i], valuePtr - argv[i]), value); } else { arguments.emplace(argv[i], ""); } } return arguments; } void BaseModelOptions::parse(Arguments& arguments) { if (getAndDelOption(arguments, "--onnx", model)) { format = ModelFormat::kONNX; } else if (getAndDelOption(arguments, "--uff", model)) { format = ModelFormat::kUFF; } else if (getAndDelOption(arguments, "--model", model)) { format = ModelFormat::kCAFFE; } } void UffInput::parse(Arguments& arguments) { getAndDelOption(arguments, "--uffNHWC", NHWC); std::vector args; if (getAndDelRepeatedOption(arguments, "--uffInput", args)) { for (const auto& i : args) { std::vector values{splitToStringVec(i, ',')}; if (values.size() == 4) { nvinfer1::Dims3 dims{std::stoi(values[1]), std::stoi(values[2]), std::stoi(values[3])}; inputs.emplace_back(values[0], dims); } else { throw std::invalid_argument(std::string("Invalid uffInput ") + i); } } } } void ModelOptions::parse(Arguments& arguments) { baseModel.parse(arguments); switch (baseModel.format) { case ModelFormat::kCAFFE: { getAndDelOption(arguments, "--deploy", prototxt); break; } case ModelFormat::kUFF: { uffInputs.parse(arguments); if (uffInputs.inputs.empty()) { throw std::invalid_argument("Uff models require at least one input"); } break; } case ModelFormat::kONNX: break; case ModelFormat::kANY: { if (getAndDelOption(arguments, "--deploy", prototxt)) { baseModel.format = ModelFormat::kCAFFE; } break; } } // The --output flag should only be used with Caffe and UFF. It has no effect // on ONNX. std::vector outArgs; if (getAndDelRepeatedOption(arguments, "--output", outArgs)) { for (const auto& o : outArgs) { for (auto& v : splitToStringVec(o, ',')) { outputs.emplace_back(std::move(v)); } } } if (baseModel.format == ModelFormat::kCAFFE || baseModel.format == ModelFormat::kUFF) { if (outputs.empty()) { throw std::invalid_argument( "Caffe and Uff models require at least one output"); } } else if (baseModel.format == ModelFormat::kONNX) { if (!outputs.empty()) { throw std::invalid_argument( "The --output flag should not be used with ONNX models."); } } } void BuildOptions::parse(Arguments& arguments) { auto getFormats = [&arguments](std::vector& formatsVector, const char* argument) { std::string list; getAndDelOption(arguments, argument, list); std::vector formats{splitToStringVec(list, ',')}; for (const auto& f : formats) { formatsVector.push_back(stringToValue(f)); } }; getFormats(inputFormats, "--inputIOFormats"); getFormats(outputFormats, "--outputIOFormats"); bool addedExplicitBatchFlag{false}; getAndDelOption(arguments, "--explicitBatch", addedExplicitBatchFlag); if (addedExplicitBatchFlag) { sample::gLogWarning << "--explicitBatch flag has been deprecated and has no effect!" << std::endl; sample::gLogWarning << "Explicit batch dim is automatically enabled if " "input model is ONNX or if dynamic " << "shapes are provided when the engine is built." << std::endl; } bool minShapes = getShapesBuild(arguments, shapes, "--minShapes", nvinfer1::OptProfileSelector::kMIN); bool optShapes = getShapesBuild(arguments, shapes, "--optShapes", nvinfer1::OptProfileSelector::kOPT); bool maxShapes = getShapesBuild(arguments, shapes, "--maxShapes", nvinfer1::OptProfileSelector::kMAX); processShapes(shapes, minShapes, optShapes, maxShapes, false); bool minShapesCalib = getShapesBuild(arguments, shapesCalib, "--minShapesCalib", nvinfer1::OptProfileSelector::kMIN); bool optShapesCalib = getShapesBuild(arguments, shapesCalib, "--optShapesCalib", nvinfer1::OptProfileSelector::kOPT); bool maxShapesCalib = getShapesBuild(arguments, shapesCalib, "--maxShapesCalib", nvinfer1::OptProfileSelector::kMAX); processShapes(shapesCalib, minShapesCalib, optShapesCalib, maxShapesCalib, true); bool addedExplicitPrecisionFlag{false}; getAndDelOption(arguments, "--explicitPrecision", addedExplicitPrecisionFlag); if (addedExplicitPrecisionFlag) { sample::gLogWarning << "--explicitPrecision flag has been deprecated and has no effect!" << std::endl; } if (getAndDelOption(arguments, "--workspace", workspace)) { sample::gLogWarning << "--workspace flag has been deprecated by --memPoolSize flag." << std::endl; } std::string memPoolSizes; getAndDelOption(arguments, "--memPoolSize", memPoolSizes); std::vector memPoolSpecs{splitToStringVec(memPoolSizes, ',')}; for (auto const& memPoolSpec : memPoolSpecs) { std::string memPoolName; double memPoolSize; std::tie(memPoolName, memPoolSize) = splitNameAndValue(memPoolSpec); if (memPoolSize < 0) { throw std::invalid_argument(std::string("Negative memory pool size: ") + std::to_string(memPoolSize)); } if (memPoolName == "workspace") { workspace = memPoolSize; } else if (memPoolName == "dlaSRAM") { dlaSRAM = memPoolSize; } else if (memPoolName == "dlaLocalDRAM") { dlaLocalDRAM = memPoolSize; } else if (memPoolName == "dlaGlobalDRAM") { dlaGlobalDRAM = memPoolSize; } else if (!memPoolName.empty()) { throw std::invalid_argument(std::string("Unknown memory pool: ") + memPoolName); } } getAndDelOption(arguments, "--maxBatch", maxBatch); getAndDelOption(arguments, "--minTiming", minTiming); getAndDelOption(arguments, "--avgTiming", avgTiming); bool best{false}; getAndDelOption(arguments, "--best", best); if (best) { int8 = true; fp16 = true; } getAndDelOption(arguments, "--refit", refittable); getAndDelNegOption(arguments, "--noTF32", tf32); getAndDelOption(arguments, "--fp16", fp16); getAndDelOption(arguments, "--int8", int8); getAndDelOption(arguments, "--safe", safe); getAndDelOption(arguments, "--consistency", consistency); getAndDelOption(arguments, "--restricted", restricted); getAndDelOption(arguments, "--directIO", directIO); std::string precisionConstraintsString; getAndDelOption(arguments, "--precisionConstraints", precisionConstraintsString); if (!precisionConstraintsString.empty()) { const std::unordered_map precisionConstraintsMap = {{"obey", PrecisionConstraints::kOBEY}, {"prefer", PrecisionConstraints::kPREFER}, {"none", PrecisionConstraints::kNONE}}; auto it = precisionConstraintsMap.find(precisionConstraintsString); if (it == precisionConstraintsMap.end()) { throw std::invalid_argument( std::string("Unknown precision constraints: ") + precisionConstraintsString); } precisionConstraints = it->second; } else { precisionConstraints = PrecisionConstraints::kNONE; } getLayerPrecisions(arguments, "--layerPrecisions", layerPrecisions); getLayerOutputTypes(arguments, "--layerOutputTypes", layerOutputTypes); if (layerPrecisions.empty() && layerOutputTypes.empty() && precisionConstraints != PrecisionConstraints::kNONE) { sample::gLogWarning << "When --precisionConstraints flag is set to " "\"obey\" or \"prefer\", please add " << "--layerPrecision/--layerOutputTypes flags to set " "layer-wise precisions and output " << "types." << std::endl; } else if ((!layerPrecisions.empty() || !layerOutputTypes.empty()) && precisionConstraints == PrecisionConstraints::kNONE) { sample::gLogWarning << "--layerPrecision/--layerOutputTypes flags have no " "effect when --precisionConstraints " << "flag is set to \"none\"." << std::endl; } std::string sparsityString; getAndDelOption(arguments, "--sparsity", sparsityString); if (sparsityString == "disable") { sparsity = SparsityFlag::kDISABLE; } else if (sparsityString == "enable") { sparsity = SparsityFlag::kENABLE; } else if (sparsityString == "force") { sparsity = SparsityFlag::kFORCE; } else if (!sparsityString.empty()) { throw std::invalid_argument(std::string("Unknown sparsity mode: ") + sparsityString); } bool calibCheck = getAndDelOption(arguments, "--calib", calibration); if (int8 && calibCheck && !shapes.empty() && shapesCalib.empty()) { shapesCalib = shapes; } std::string profilingVerbosityString; if (getAndDelOption(arguments, "--nvtxMode", profilingVerbosityString)) { sample::gLogWarning << "--nvtxMode flag has been deprecated by --profilingVerbosity flag." << std::endl; } getAndDelOption(arguments, "--profilingVerbosity", profilingVerbosityString); if (profilingVerbosityString == "layer_names_only") { profilingVerbosity = nvinfer1::ProfilingVerbosity::kLAYER_NAMES_ONLY; } else if (profilingVerbosityString == "none") { profilingVerbosity = nvinfer1::ProfilingVerbosity::kNONE; } else if (profilingVerbosityString == "detailed") { profilingVerbosity = nvinfer1::ProfilingVerbosity::kDETAILED; } else if (profilingVerbosityString == "default") { sample::gLogWarning << "--profilingVerbosity=default has been deprecated by " "--profilingVerbosity=layer_names_only." << std::endl; profilingVerbosity = nvinfer1::ProfilingVerbosity::kLAYER_NAMES_ONLY; } else if (profilingVerbosityString == "verbose") { sample::gLogWarning << "--profilingVerbosity=verbose has been deprecated " "by --profilingVerbosity=detailed." << std::endl; profilingVerbosity = nvinfer1::ProfilingVerbosity::kDETAILED; } else if (!profilingVerbosityString.empty()) { throw std::invalid_argument(std::string("Unknown profilingVerbosity: ") + profilingVerbosityString); } if (getAndDelOption(arguments, "--loadEngine", engine)) { load = true; } if (getAndDelOption(arguments, "--saveEngine", engine)) { save = true; } if (load && save) { throw std::invalid_argument( "Incompatible load and save engine options selected"); } std::string tacticSourceArgs; if (getAndDelOption(arguments, "--tacticSources", tacticSourceArgs)) { std::vector tacticList = splitToStringVec(tacticSourceArgs, ','); for (auto& t : tacticList) { bool enable{false}; if (t.front() == '+') { enable = true; } else if (t.front() != '-') { throw std::invalid_argument( "Tactic source must be prefixed with + or -, indicating whether it " "should be enabled or disabled " "respectively."); } t.erase(0, 1); const auto toUpper = [](std::string& sourceName) { std::transform(sourceName.begin(), sourceName.end(), sourceName.begin(), [](char c) { return std::toupper(c); }); return sourceName; }; nvinfer1::TacticSource source{}; t = toUpper(t); if (t == "CUBLAS") { source = nvinfer1::TacticSource::kCUBLAS; } else if (t == "CUBLASLT" || t == "CUBLAS_LT") { source = nvinfer1::TacticSource::kCUBLAS_LT; } else if (t == "CUDNN") { source = nvinfer1::TacticSource::kCUDNN; } else { throw std::invalid_argument(std::string("Unknown tactic source: ") + t); } uint32_t sourceBit = 1U << static_cast(source); if (enable) { enabledTactics |= sourceBit; } else { disabledTactics |= sourceBit; } if (enabledTactics & disabledTactics) { throw std::invalid_argument(std::string("Cannot enable and disable ") + t); } } } bool noBuilderCache{false}; getAndDelOption(arguments, "--noBuilderCache", noBuilderCache); getAndDelOption(arguments, "--timingCacheFile", timingCacheFile); if (noBuilderCache) { timingCacheMode = TimingCacheMode::kDISABLE; } else if (!timingCacheFile.empty()) { timingCacheMode = TimingCacheMode::kGLOBAL; } else { timingCacheMode = TimingCacheMode::kLOCAL; } } void SystemOptions::parse(Arguments& arguments) { getAndDelOption(arguments, "--device", device); getAndDelOption(arguments, "--useDLACore", DLACore); getAndDelOption(arguments, "--allowGPUFallback", fallback); std::string pluginName; while (getAndDelOption(arguments, "--plugins", pluginName)) { plugins.emplace_back(pluginName); } } void InferenceOptions::parse(Arguments& arguments) { getAndDelOption(arguments, "--streams", streams); getAndDelOption(arguments, "--iterations", iterations); getAndDelOption(arguments, "--duration", duration); getAndDelOption(arguments, "--warmUp", warmup); getAndDelOption(arguments, "--sleepTime", sleep); getAndDelOption(arguments, "--idleTime", idle); bool exposeDMA{false}; if (getAndDelOption(arguments, "--exposeDMA", exposeDMA)) { overlap = !exposeDMA; } getAndDelOption(arguments, "--noDataTransfers", skipTransfers); getAndDelOption(arguments, "--useManagedMemory", useManaged); getAndDelOption(arguments, "--useSpinWait", spin); getAndDelOption(arguments, "--threads", threads); getAndDelOption(arguments, "--useCudaGraph", graph); getAndDelOption(arguments, "--separateProfileRun", rerun); getAndDelOption(arguments, "--buildOnly", skip); getAndDelOption(arguments, "--timeDeserialize", timeDeserialize); getAndDelOption(arguments, "--timeRefit", timeRefit); std::string list; getAndDelOption(arguments, "--loadInputs", list); std::vector inputsList{splitToStringVec(list, ',')}; splitInsertKeyValue(inputsList, inputs); getShapesInference(arguments, shapes, "--shapes"); getAndDelOption(arguments, "--batch", batch); } void ReportingOptions::parse(Arguments& arguments) { getAndDelOption(arguments, "--percentile", percentile); getAndDelOption(arguments, "--avgRuns", avgs); getAndDelOption(arguments, "--verbose", verbose); getAndDelOption(arguments, "--dumpRefit", refit); getAndDelOption(arguments, "--dumpOutput", output); getAndDelOption(arguments, "--dumpProfile", profile); getAndDelOption(arguments, "--dumpLayerInfo", layerInfo); getAndDelOption(arguments, "--exportTimes", exportTimes); getAndDelOption(arguments, "--exportOutput", exportOutput); getAndDelOption(arguments, "--exportProfile", exportProfile); getAndDelOption(arguments, "--exportLayerInfo", exportLayerInfo); if (percentile < 0 || percentile > 100) { throw std::invalid_argument(std::string("Percentile ") + std::to_string(percentile) + "is not in [0,100]"); } } bool parseHelp(Arguments& arguments) { bool helpLong{false}; bool helpShort{false}; getAndDelOption(arguments, "--help", helpLong); getAndDelOption(arguments, "-h", helpShort); return helpLong || helpShort; } void AllOptions::parse(Arguments& arguments) { model.parse(arguments); build.parse(arguments); system.parse(arguments); inference.parse(arguments); // Use explicitBatch when input model is ONNX or when dynamic shapes are used. const bool isOnnx{model.baseModel.format == ModelFormat::kONNX}; const bool hasDynamicShapes{!build.shapes.empty() || !inference.shapes.empty()}; const bool detectedExplicitBatch = isOnnx || hasDynamicShapes; // Throw an error if user tries to use --batch or --maxBatch when the engine // has explicit batch dim. const bool maxBatchWasSet{build.maxBatch != maxBatchNotProvided}; const bool batchWasSet{inference.batch != batchNotProvided}; if (detectedExplicitBatch && (maxBatchWasSet || batchWasSet)) { throw std::invalid_argument( "The --batch and --maxBatch flags should not be used when the input " "model is ONNX or when dynamic shapes " "are provided. Please use --optShapes and --shapes to set input shapes " "instead."); } // If batch and/or maxBatch is not set and the engine has implicit batch dim, // set them to default values. if (!detectedExplicitBatch) { // If batch is not set, set it to default value. if (!batchWasSet) { inference.batch = defaultBatch; } // If maxBatch is not set, set it to be equal to batch. if (!maxBatchWasSet) { build.maxBatch = inference.batch; } // MaxBatch should not be less than batch. if (build.maxBatch < inference.batch) { throw std::invalid_argument( "Build max batch " + std::to_string(build.maxBatch) + " is less than inference batch " + std::to_string(inference.batch)); } } if (build.shapes.empty() && !inference.shapes.empty()) { // If --shapes are provided but --optShapes are not, assume that optShapes // is the same as shapes. for (auto& s : inference.shapes) { insertShapesBuild(build.shapes, nvinfer1::OptProfileSelector::kMIN, s.first, s.second); insertShapesBuild(build.shapes, nvinfer1::OptProfileSelector::kOPT, s.first, s.second); insertShapesBuild(build.shapes, nvinfer1::OptProfileSelector::kMAX, s.first, s.second); } } else if (!build.shapes.empty() && inference.shapes.empty()) { // If --optShapes are provided but --shapes are not, assume that shapes is // the same as optShapes. for (auto& s : build.shapes) { insertShapesInference( inference.shapes, s.first, s.second[static_cast(nvinfer1::OptProfileSelector::kOPT)]); } } reporting.parse(arguments); helps = parseHelp(arguments); if (!helps) { if (!build.load && model.baseModel.format == ModelFormat::kANY) { throw std::invalid_argument("Model missing or format not recognized"); } if (build.safe && system.DLACore >= 0) { auto checkSafeDLAFormats = [](std::vector const& fmt) { return fmt.empty() ? false : std::all_of(fmt.begin(), fmt.end(), [](IOFormat const& pair) { bool supported{false}; bool const isLINEAR{ pair.second == 1U << static_cast( nvinfer1::TensorFormat::kLINEAR)}; bool const isCHW4{ pair.second == 1U << static_cast( nvinfer1::TensorFormat::kCHW4)}; bool const isCHW32{ pair.second == 1U << static_cast( nvinfer1::TensorFormat::kCHW32)}; bool const isCHW16{ pair.second == 1U << static_cast( nvinfer1::TensorFormat::kCHW16)}; supported |= pair.first == nvinfer1::DataType::kINT8 && (isLINEAR || isCHW4 || isCHW32); supported |= pair.first == nvinfer1::DataType::kHALF && (isLINEAR || isCHW4 || isCHW16); return supported; }); }; if (!checkSafeDLAFormats(build.inputFormats) || !checkSafeDLAFormats(build.outputFormats)) { throw std::invalid_argument( "I/O formats for safe DLA capability are restricted to " "fp16/int8:linear, fp16:chw16 or int8:chw32"); } if (system.fallback) { throw std::invalid_argument( "GPU fallback (--allowGPUFallback) not allowed for safe DLA " "capability"); } } } } void SafeBuilderOptions::parse(Arguments& arguments) { auto getFormats = [&arguments](std::vector& formatsVector, const char* argument) { std::string list; getAndDelOption(arguments, argument, list); std::vector formats{splitToStringVec(list, ',')}; for (const auto& f : formats) { formatsVector.push_back(stringToValue(f)); } }; getAndDelOption(arguments, "--serialized", serialized); getAndDelOption(arguments, "--onnx", onnxModelFile); getAndDelOption(arguments, "--help", help); getAndDelOption(arguments, "-h", help); getAndDelOption(arguments, "--verbose", verbose); getAndDelOption(arguments, "-v", verbose); getFormats(inputFormats, "--inputIOFormats"); getFormats(outputFormats, "--outputIOFormats"); getAndDelOption(arguments, "--int8", int8); getAndDelOption(arguments, "--calib", calibFile); getAndDelOption(arguments, "--consistency", consistency); getAndDelOption(arguments, "--std", standard); std::string pluginName; while (getAndDelOption(arguments, "--plugins", pluginName)) { plugins.emplace_back(pluginName); } } std::ostream& operator<<(std::ostream& os, const BaseModelOptions& options) { os << "=== Model Options ===" << std::endl; os << "Format: "; switch (options.format) { case ModelFormat::kCAFFE: { os << "Caffe"; break; } case ModelFormat::kONNX: { os << "ONNX"; break; } case ModelFormat::kUFF: { os << "UFF"; break; } case ModelFormat::kANY: os << "*"; break; } os << std::endl << "Model: " << options.model << std::endl; return os; } std::ostream& operator<<(std::ostream& os, const UffInput& input) { os << "Uff Inputs Layout: " << (input.NHWC ? "NHWC" : "NCHW") << std::endl; for (const auto& i : input.inputs) { os << "Input: " << i.first << "," << i.second.d[0] << "," << i.second.d[1] << "," << i.second.d[2] << std::endl; } return os; } std::ostream& operator<<(std::ostream& os, const ModelOptions& options) { os << options.baseModel; switch (options.baseModel.format) { case ModelFormat::kCAFFE: { os << "Prototxt: " << options.prototxt << std::endl; break; } case ModelFormat::kUFF: { os << options.uffInputs; break; } case ModelFormat::kONNX: // Fallthrough: No options to report for ONNX or // the generic case case ModelFormat::kANY: break; } os << "Output:"; for (const auto& o : options.outputs) { os << " " << o; } os << std::endl; return os; } std::ostream& operator<<(std::ostream& os, nvinfer1::DataType dtype) { switch (dtype) { case nvinfer1::DataType::kFLOAT: { os << "fp32"; break; } case nvinfer1::DataType::kHALF: { os << "fp16"; break; } case nvinfer1::DataType::kINT8: { os << "int8"; break; } case nvinfer1::DataType::kINT32: { os << "int32"; break; } case nvinfer1::DataType::kBOOL: { os << "bool"; break; } } return os; } std::ostream& operator<<(std::ostream& os, IOFormat const& format) { os << format.first << ":"; for (int32_t f = 0; f < nvinfer1::EnumMax(); ++f) { if ((1U << f) & format.second) { if (f) { os << "+"; } switch (nvinfer1::TensorFormat(f)) { case nvinfer1::TensorFormat::kLINEAR: { os << "chw"; break; } case nvinfer1::TensorFormat::kCHW2: { os << "chw2"; break; } case nvinfer1::TensorFormat::kHWC8: { os << "hwc8"; break; } case nvinfer1::TensorFormat::kHWC16: { os << "hwc16"; break; } case nvinfer1::TensorFormat::kCHW4: { os << "chw4"; break; } case nvinfer1::TensorFormat::kCHW16: { os << "chw16"; break; } case nvinfer1::TensorFormat::kCHW32: { os << "chw32"; break; } case nvinfer1::TensorFormat::kDHWC8: { os << "dhwc8"; break; } case nvinfer1::TensorFormat::kCDHW32: { os << "cdhw32"; break; } case nvinfer1::TensorFormat::kHWC: { os << "hwc"; break; } case nvinfer1::TensorFormat::kDLA_LINEAR: { os << "dla_linear"; break; } case nvinfer1::TensorFormat::kDLA_HWC4: { os << "dla_hwc4"; break; } } } } return os; } std::ostream& operator<<(std::ostream& os, const ShapeRange& dims) { int32_t i = 0; for (const auto& d : dims) { if (!d.size()) { break; } os << (i ? "+" : "") << d; ++i; } return os; } std::ostream& operator<<(std::ostream& os, LayerPrecisions const& layerPrecisions) { int32_t i = 0; for (auto const& layerPrecision : layerPrecisions) { os << (i ? "," : "") << layerPrecision.first << ":" << layerPrecision.second; ++i; } return os; } std::ostream& operator<<(std::ostream& os, const BuildOptions& options) { // clang-format off os << "=== Build Options ===" << std::endl << "Max batch: "; printBatch(os, options.maxBatch) << std::endl << "Memory Pools: "; printMemoryPools(os, options) << std::endl << "minTiming: " << options.minTiming << std::endl << "avgTiming: " << options.avgTiming << std::endl << "Precision: "; printPrecision(os, options) << std::endl << "LayerPrecisions: " << options.layerPrecisions << std::endl << "Calibration: " << (options.int8 && options.calibration.empty() ? "Dynamic" : options.calibration.c_str()) << std::endl << "Refit: " << boolToEnabled(options.refittable) << std::endl << "Sparsity: "; printSparsity(os, options) << std::endl << "Safe mode: " << boolToEnabled(options.safe) << std::endl << "DirectIO mode: " << boolToEnabled(options.directIO) << std::endl << "Restricted mode: " << boolToEnabled(options.restricted) << std::endl << "Save engine: " << (options.save ? options.engine : "") << std::endl << "Load engine: " << (options.load ? options.engine : "") << std::endl << "Profiling verbosity: " << static_cast(options.profilingVerbosity) << std::endl << "Tactic sources: "; printTacticSources(os, options.enabledTactics, options.disabledTactics) << std::endl << "timingCacheMode: "; printTimingCache(os, options) << std::endl << "timingCacheFile: " << options.timingCacheFile << std::endl; // clang-format on auto printIOFormats = [](std::ostream& os, const char* direction, const std::vector formats) { if (formats.empty()) { os << direction << "s format: fp32:CHW" << std::endl; } else { for (const auto& f : formats) { os << direction << ": " << f << std::endl; } } }; printIOFormats(os, "Input(s)", options.inputFormats); printIOFormats(os, "Output(s)", options.outputFormats); printShapes(os, "build", options.shapes); printShapes(os, "calibration", options.shapesCalib); return os; } std::ostream& operator<<(std::ostream& os, const SystemOptions& options) { // clang-format off os << "=== System Options ===" << std::endl << "Device: " << options.device << std::endl << "DLACore: " << (options.DLACore != -1 ? std::to_string(options.DLACore) : "") << (options.DLACore != -1 && options.fallback ? "(With GPU fallback)" : "") << std::endl; os << "Plugins:"; for (const auto& p : options.plugins) { os << " " << p; } os << std::endl; return os; // clang-format on } std::ostream& operator<<(std::ostream& os, const InferenceOptions& options) { // clang-format off os << "=== Inference Options ===" << std::endl << "Batch: "; if (options.batch && options.shapes.empty()) { os << options.batch << std::endl; } else { os << "Explicit" << std::endl; } printShapes(os, "inference", options.shapes); os << "Iterations: " << options.iterations << std::endl << "Duration: " << options.duration << "s (+ " << options.warmup << "ms warm up)" << std::endl << "Sleep time: " << options.sleep << "ms" << std::endl << "Idle time: " << options.idle << "ms" << std::endl << "Streams: " << options.streams << std::endl << "ExposeDMA: " << boolToEnabled(!options.overlap) << std::endl << "Data transfers: " << boolToEnabled(!options.skipTransfers) << std::endl << "Spin-wait: " << boolToEnabled(options.spin) << std::endl << "Multithreading: " << boolToEnabled(options.threads) << std::endl << "CUDA Graph: " << boolToEnabled(options.graph) << std::endl << "Separate profiling: " << boolToEnabled(options.rerun) << std::endl << "Time Deserialize: " << boolToEnabled(options.timeDeserialize) << std::endl << "Time Refit: " << boolToEnabled(options.timeRefit) << std::endl << "Skip inference: " << boolToEnabled(options.skip) << std::endl; // clang-format on os << "Inputs:" << std::endl; for (const auto& input : options.inputs) { os << input.first << "<-" << input.second << std::endl; } return os; } std::ostream& operator<<(std::ostream& os, const ReportingOptions& options) { // clang-format off os << "=== Reporting Options ===" << std::endl << "Verbose: " << boolToEnabled(options.verbose) << std::endl << "Averages: " << options.avgs << " inferences" << std::endl << "Percentile: " << options.percentile << std::endl << "Dump refittable layers:" << boolToEnabled(options.refit) << std::endl << "Dump output: " << boolToEnabled(options.output) << std::endl << "Profile: " << boolToEnabled(options.profile) << std::endl << "Export timing to JSON file: " << options.exportTimes << std::endl << "Export output to JSON file: " << options.exportOutput << std::endl << "Export profile to JSON file: " << options.exportProfile << std::endl; // clang-format on return os; } std::ostream& operator<<(std::ostream& os, const AllOptions& options) { os << options.model << options.build << options.system << options.inference << options.reporting << std::endl; return os; } std::ostream& operator<<(std::ostream& os, const SafeBuilderOptions& options) { auto printIOFormats = [](std::ostream& os, const char* direction, const std::vector formats) { if (formats.empty()) { os << direction << "s format: fp32:CHW" << std::endl; } else { for (const auto& f : formats) { os << direction << ": " << f << std::endl; } } }; os << "=== Build Options ===" << std::endl; os << "Model ONNX: " << options.onnxModelFile << std::endl; os << "Precision: FP16"; if (options.int8) { os << " + INT8"; } os << std::endl; os << "Calibration file: " << options.calibFile << std::endl; os << "Serialized Network: " << options.serialized << std::endl; printIOFormats(os, "Input(s)", options.inputFormats); printIOFormats(os, "Output(s)", options.outputFormats); os << "Plugins:"; for (const auto& p : options.plugins) { os << " " << p; } os << std::endl; return os; } void BaseModelOptions::help(std::ostream& os) { // clang-format off os << " --uff= UFF model" << std::endl << " --onnx= ONNX model" << std::endl << " --model= Caffe model (default = no model, random weights used)" << std::endl; // clang-format on } void UffInput::help(std::ostream& os) { // clang-format off os << " --uffInput=,X,Y,Z Input blob name and its dimensions (X,Y,Z=C,H,W), it can be specified " "multiple times; at least one is required for UFF models" << std::endl << " --uffNHWC Set if inputs are in the NHWC layout instead of NCHW (use " << "X,Y,Z=H,W,C order in --uffInput)" << std::endl; // clang-format on } void ModelOptions::help(std::ostream& os) { // clang-format off os << "=== Model Options ===" << std::endl; BaseModelOptions::help(os); os << " --deploy= Caffe prototxt file" << std::endl << " --output=[,]* Output names (it can be specified multiple times); at least one output " "is required for UFF and Caffe" << std::endl; UffInput::help(os); // clang-format on } void BuildOptions::help(std::ostream& os) { // clang-format off os << "=== Build Options ===" "\n" " --maxBatch Set max batch size and build an implicit batch engine (default = same size as --batch)" "\n" " This option should not be used when the input model is ONNX or when dynamic shapes are provided." "\n" " --minShapes=spec Build with dynamic shapes using a profile with the min shapes provided" "\n" " --optShapes=spec Build with dynamic shapes using a profile with the opt shapes provided" "\n" " --maxShapes=spec Build with dynamic shapes using a profile with the max shapes provided" "\n" " --minShapesCalib=spec Calibrate with dynamic shapes using a profile with the min shapes provided" "\n" " --optShapesCalib=spec Calibrate with dynamic shapes using a profile with the opt shapes provided" "\n" " --maxShapesCalib=spec Calibrate with dynamic shapes using a profile with the max shapes provided" "\n" " Note: All three of min, opt and max shapes must be supplied." "\n" " However, if only opt shapes is supplied then it will be expanded so" "\n" " that min shapes and max shapes are set to the same values as opt shapes." "\n" " Input names can be wrapped with escaped single quotes (ex: \\\'Input:0\\\')." "\n" " Example input shapes spec: input0:1x3x256x256,input1:1x3x128x128" "\n" " Each input shape is supplied as a key-value pair where key is the input name and" "\n" " value is the dimensions (including the batch dimension) to be used for that input." "\n" " Each key-value pair has the key and value separated using a colon (:)." "\n" " Multiple input shapes can be provided via comma-separated key-value pairs." "\n" " --inputIOFormats=spec Type and format of each of the input tensors (default = all inputs in fp32:chw)" "\n" " See --outputIOFormats help for the grammar of type and format list." "\n" " Note: If this option is specified, please set comma-separated types and formats for all" "\n" " inputs following the same order as network inputs ID (even if only one input" "\n" " needs specifying IO format) or set the type and format once for broadcasting." "\n" " --outputIOFormats=spec Type and format of each of the output tensors (default = all outputs in fp32:chw)" "\n" " Note: If this option is specified, please set comma-separated types and formats for all" "\n" " outputs following the same order as network outputs ID (even if only one output" "\n" " needs specifying IO format) or set the type and format once for broadcasting." "\n" " IO Formats: spec ::= IOfmt[\",\"spec]" "\n" " IOfmt ::= type:fmt" "\n" " type ::= \"fp32\"|\"fp16\"|\"int32\"|\"int8\"" "\n" " fmt ::= (\"chw\"|\"chw2\"|\"chw4\"|\"hwc8\"|\"chw16\"|\"chw32\"|\"dhwc8\")[\"+\"fmt]" "\n" " --workspace=N Set workspace size in MiB." "\n" " --memPoolSize=poolspec Specify the size constraints of the designated memory pool(s) in MiB." "\n" " Note: Also accepts decimal sizes, e.g. 0.25MiB. Will be rounded down to the nearest integer bytes." "\n" " Pool constraint: poolspec ::= poolfmt[\",\"poolspec]" "\n" " poolfmt ::= pool:sizeInMiB" "\n" " pool ::= \"workspace\"|\"dlaSRAM\"|\"dlaLocalDRAM\"|\"dlaGlobalDRAM\"" "\n" " --profilingVerbosity=mode Specify profiling verbosity. mode ::= layer_names_only|detailed|none (default = layer_names_only)" "\n" " --minTiming=M Set the minimum number of iterations used in kernel selection (default = " << defaultMinTiming << ")" "\n" " --avgTiming=M Set the number of times averaged in each iteration for kernel selection (default = " << defaultAvgTiming << ")" "\n" " --refit Mark the engine as refittable. This will allow the inspection of refittable layers " "\n" " and weights within the engine." "\n" " --sparsity=spec Control sparsity (default = disabled). " "\n" " Sparsity: spec ::= \"disable\", \"enable\", \"force\"" "\n" " Note: Description about each of these options is as below" "\n" " disable = do not enable sparse tactics in the builder (this is the default)" "\n" " enable = enable sparse tactics in the builder (but these tactics will only be" "\n" " considered if the weights have the right sparsity pattern)" "\n" " force = enable sparse tactics in the builder and force-overwrite the weights to have" "\n" " a sparsity pattern (even if you loaded a model yourself)" "\n" " --noTF32 Disable tf32 precision (default is to enable tf32, in addition to fp32)" "\n" " --fp16 Enable fp16 precision, in addition to fp32 (default = disabled)" "\n" " --int8 Enable int8 precision, in addition to fp32 (default = disabled)" "\n" " --best Enable all precisions to achieve the best performance (default = disabled)" "\n" " --directIO Avoid reformatting at network boundaries. (default = disabled)" "\n" " --precisionConstraints=spec Control precision constraint setting. (default = none)" "\n" " Precision Constaints: spec ::= \"none\" | \"obey\" | \"prefer\"" "\n" " none = no constraints" "\n" " prefer = meet precision constraints set by --layerPrecisions/--layerOutputTypes if possible" "\n" " obey = meet precision constraints set by --layerPrecisions/--layerOutputTypes or fail" "\n" " otherwise" "\n" " --layerPrecisions=spec Control per-layer precision constraints. Effective only when precisionConstraints is set to" "\n" " \"obey\" or \"prefer\". (default = none)" "\n" " The specs are read left-to-right, and later ones override earlier ones. \"*\" can be used as a" "\n" " layerName to specify the default precision for all the unspecified layers." "\n" " Per-layer precision spec ::= layerPrecision[\",\"spec]" "\n" " layerPrecision ::= layerName\":\"precision" "\n" " precision ::= \"fp32\"|\"fp16\"|\"int32\"|\"int8\"" "\n" " --layerOutputTypes=spec Control per-layer output type constraints. Effective only when precisionConstraints is set to" "\n" " \"obey\" or \"prefer\". (default = none)" "\n" " The specs are read left-to-right, and later ones override earlier ones. \"*\" can be used as a" "\n" " layerName to specify the default precision for all the unspecified layers. If a layer has more than""\n" " one output, then multiple types separated by \"+\" can be provided for this layer." "\n" " Per-layer output type spec ::= layerOutputTypes[\",\"spec]" "\n" " layerOutputTypes ::= layerName\":\"type" "\n" " type ::= \"fp32\"|\"fp16\"|\"int32\"|\"int8\"[\"+\"type]" "\n" " --calib= Read INT8 calibration cache file" "\n" " --safe Enable build safety certified engine" "\n" " --consistency Perform consistency checking on safety certified engine" "\n" " --restricted Enable safety scope checking with kSAFETY_SCOPE build flag" "\n" " --saveEngine= Save the serialized engine" "\n" " --loadEngine= Load a serialized engine" "\n" " --tacticSources=tactics Specify the tactics to be used by adding (+) or removing (-) tactics from the default " "\n" " tactic sources (default = all available tactics)." "\n" " Note: Currently only cuDNN, cuBLAS and cuBLAS-LT are listed as optional tactics." "\n" " Tactic Sources: tactics ::= [\",\"tactic]" "\n" " tactic ::= (+|-)lib" "\n" " lib ::= \"CUBLAS\"|\"CUBLAS_LT\"|\"CUDNN\"" "\n" " For example, to disable cudnn and enable cublas: --tacticSources=-CUDNN,+CUBLAS" "\n" " --noBuilderCache Disable timing cache in builder (default is to enable timing cache)" "\n" " --timingCacheFile= Save/load the serialized global timing cache" "\n" ; // clang-format on os << std::flush; } void SystemOptions::help(std::ostream& os) { // clang-format off os << "=== System Options ===" << std::endl << " --device=N Select cuda device N (default = " << defaultDevice << ")" << std::endl << " --useDLACore=N Select DLA core N for layers that support DLA (default = none)" << std::endl << " --allowGPUFallback When DLA is enabled, allow GPU fallback for unsupported layers " "(default = disabled)" << std::endl; os << " --plugins Plugin library (.so) to load (can be specified multiple times)" << std::endl; // clang-format on } void InferenceOptions::help(std::ostream& os) { // clang-format off os << "=== Inference Options ===" << std::endl << " --batch=N Set batch size for implicit batch engines (default = " << defaultBatch << ")" << std::endl << " This option should not be used when the engine is built from an ONNX model or when dynamic" << std::endl << " shapes are provided when the engine is built." << std::endl << " --shapes=spec Set input shapes for dynamic shapes inference inputs." << std::endl << " Note: Input names can be wrapped with escaped single quotes (ex: \\\'Input:0\\\')." << std::endl << " Example input shapes spec: input0:1x3x256x256, input1:1x3x128x128" << std::endl << " Each input shape is supplied as a key-value pair where key is the input name and" << std::endl << " value is the dimensions (including the batch dimension) to be used for that input." << std::endl << " Each key-value pair has the key and value separated using a colon (:)." << std::endl << " Multiple input shapes can be provided via comma-separated key-value pairs." << std::endl << " --loadInputs=spec Load input values from files (default = generate random inputs). Input names can be " "wrapped with single quotes (ex: 'Input:0')" << std::endl << " Input values spec ::= Ival[\",\"spec]" << std::endl << " Ival ::= name\":\"file" << std::endl << " --iterations=N Run at least N inference iterations (default = " << defaultIterations << ")" << std::endl << " --warmUp=N Run for N milliseconds to warmup before measuring performance (default = " << defaultWarmUp << ")" << std::endl << " --duration=N Run performance measurements for at least N seconds wallclock time (default = " << defaultDuration << ")" << std::endl << " --sleepTime=N Delay inference start with a gap of N milliseconds between launch and compute " "(default = " << defaultSleep << ")" << std::endl << " --idleTime=N Sleep N milliseconds between two continuous iterations" "(default = " << defaultIdle << ")" << std::endl << " --streams=N Instantiate N engines to use concurrently (default = " << defaultStreams << ")" << std::endl << " --exposeDMA Serialize DMA transfers to and from device (default = disabled)." << std::endl << " --noDataTransfers Disable DMA transfers to and from device (default = enabled)." << std::endl << " --useManagedMemory Use managed memory instead of seperate host and device allocations (default = disabled)." << std::endl << " --useSpinWait Actively synchronize on GPU events. This option may decrease synchronization time but " "increase CPU usage and power (default = disabled)" << std::endl << " --threads Enable multithreading to drive engines with independent threads" " or speed up refitting (default = disabled) " << std::endl << " --useCudaGraph Use CUDA graph to capture engine execution and then launch inference (default = disabled)." << std::endl << " This flag may be ignored if the graph capture fails." << std::endl << " --timeDeserialize Time the amount of time it takes to deserialize the network and exit." << std::endl << " --timeRefit Time the amount of time it takes to refit the engine before inference." << std::endl << " --separateProfileRun Do not attach the profiler in the benchmark run; if profiling is enabled, a second " "profile run will be executed (default = disabled)" << std::endl << " --buildOnly Skip inference perf measurement (default = disabled)" << std::endl; // clang-format on } void ReportingOptions::help(std::ostream& os) { // clang-format off os << "=== Reporting Options ===" << std::endl << " --verbose Use verbose logging (default = false)" << std::endl << " --avgRuns=N Report performance measurements averaged over N consecutive " "iterations (default = " << defaultAvgRuns << ")" << std::endl << " --percentile=P Report performance for the P percentage (0<=P<=100, 0 " "representing max perf, and 100 representing min perf; (default" " = " << defaultPercentile << "%)" << std::endl << " --dumpRefit Print the refittable layers and weights from a refittable " "engine" << std::endl << " --dumpOutput Print the output tensor(s) of the last inference iteration " "(default = disabled)" << std::endl << " --dumpProfile Print profile information per layer (default = disabled)" << std::endl << " --dumpLayerInfo Print layer information of the engine to console " "(default = disabled)" << std::endl << " --exportTimes= Write the timing results in a json file (default = disabled)" << std::endl << " --exportOutput= Write the output tensors to a json file (default = disabled)" << std::endl << " --exportProfile= Write the profile information per layer in a json file " "(default = disabled)" << std::endl << " --exportLayerInfo= Write the layer information of the engine in a json file " "(default = disabled)" << std::endl; // clang-format on } void helpHelp(std::ostream& os) { // clang-format off os << "=== Help ===" << std::endl << " --help, -h Print this message" << std::endl; // clang-format on } void AllOptions::help(std::ostream& os) { ModelOptions::help(os); os << std::endl; BuildOptions::help(os); os << std::endl; InferenceOptions::help(os); os << std::endl; // clang-format off os << "=== Build and Inference Batch Options ===" << std::endl << " When using implicit batch, the max batch size of the engine, if not given, " << std::endl << " is set to the inference batch size;" << std::endl << " when using explicit batch, if shapes are specified only for inference, they " << std::endl << " will be used also as min/opt/max in the build profile; if shapes are " << std::endl << " specified only for the build, the opt shapes will be used also for inference;" << std::endl << " if both are specified, they must be compatible; and if explicit batch is " << std::endl << " enabled but neither is specified, the model must provide complete static" << std::endl << " dimensions, including batch size, for all inputs" << std::endl << " Using ONNX models automatically forces explicit batch." << std::endl << std::endl; // clang-format on ReportingOptions::help(os); os << std::endl; SystemOptions::help(os); os << std::endl; helpHelp(os); } void SafeBuilderOptions::printHelp(std::ostream& os) { // clang-format off os << "=== Mandatory ===" << std::endl << " --onnx= ONNX model" << std::endl << " " << std::endl << "=== Optional ===" << std::endl << " --inputIOFormats=spec Type and format of each of the input tensors (default = all inputs in fp32:chw)" << std::endl << " See --outputIOFormats help for the grammar of type and format list." << std::endl << " Note: If this option is specified, please set comma-separated types and formats for all" << std::endl << " inputs following the same order as network inputs ID (even if only one input" << std::endl << " needs specifying IO format) or set the type and format once for broadcasting." << std::endl << " --outputIOFormats=spec Type and format of each of the output tensors (default = all outputs in fp32:chw)" << std::endl << " Note: If this option is specified, please set comma-separated types and formats for all" << std::endl << " outputs following the same order as network outputs ID (even if only one output" << std::endl << " needs specifying IO format) or set the type and format once for broadcasting." << std::endl << " IO Formats: spec ::= IOfmt[\",\"spec]" << std::endl << " IOfmt ::= type:fmt" << std::endl << " type ::= \"fp32\"|\"fp16\"|\"int32\"|\"int8\"" << std::endl << " fmt ::= (\"chw\"|\"chw2\"|\"chw4\"|\"hwc8\"|\"chw16\"|\"chw32\"|\"dhwc8\")[\"+\"fmt]" << std::endl << " --int8 Enable int8 precision, in addition to fp16 (default = disabled)" << std::endl << " --consistency Enable consistency check for serialized engine, (default = disabled)" << std::endl << " --std Build standard serialized engine, (default = disabled)" << std::endl << " --calib= Read INT8 calibration cache file" << std::endl << " --serialized= Save the serialized network" << std::endl << " --plugins Plugin library (.so) to load (can be specified multiple times)" << std::endl << " --verbose or -v Use verbose logging (default = false)" << std::endl << " --help or -h Print this message" << std::endl << " " << std::endl; // clang-format on } } // namespace sample