""" # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations from functools import partial import paddle from paddle import nn from paddleformers.transformers import PretrainedModel from paddleformers.utils.log import logger from fastdeploy.config import FDConfig from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.model_executor.graph_optimization.decorator import ( support_graph_optimization, ) from fastdeploy.model_executor.layers.activation import SiluAndMul from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding from fastdeploy.model_executor.layers.linear import ( MergedColumnParallelLinear, RowParallelLinear, ) from fastdeploy.model_executor.layers.lm_head import ParallelLMHead from fastdeploy.model_executor.layers.moe.moe import FusedMoE from fastdeploy.model_executor.layers.normalization import RMSNorm from fastdeploy.model_executor.models.model_base import ModelForCasualLM from fastdeploy.model_executor.models.qwen3 import Qwen3Attention class Qwen3MLP(nn.Layer): """ """ def __init__( self, fd_config: FDConfig, prefix: str = "", ) -> None: super().__init__() self.nranks = fd_config.parallel_config.tensor_parallel_size self.up_gate_proj = MergedColumnParallelLinear( fd_config, prefix=f"{prefix}.up_gate_proj", input_size=fd_config.model_config.hidden_size, output_size=fd_config.model_config.intermediate_size * 2, with_bias=False, activation=fd_config.model_config.hidden_act, ) self.down_proj = RowParallelLinear( fd_config, prefix=f"{prefix}.down_proj", input_size=fd_config.model_config.intermediate_size, output_size=fd_config.model_config.hidden_size, with_bias=False, ) self.act_fn = SiluAndMul( fd_config, bias=getattr(self.up_gate_proj, "bias", None), act_method=fd_config.model_config.hidden_act, ) def load_state_dict(self, state_dict): """ """ self.up_gate_proj.load_state_dict(state_dict) self.down_proj.load_state_dict(state_dict) def forward(self, x): """ """ gate_up_out = self.up_gate_proj(x) act_out = self.act_fn(gate_up_out) down_out = self.down_proj(act_out) return down_out class Qwen3DecoderLayer(nn.Layer): """ """ def __init__( self, fd_config: FDConfig, prefix: str = "", ) -> None: super().__init__() layer_id = int(prefix.split(sep=".")[-1]) self.self_attn = Qwen3Attention( fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}.self_attn", ) weight_key_map = { "gate_weight_key": f"{prefix}.mlp.gate.weight", "up_gate_proj_expert_weight_key": f"{prefix}.mlp.experts.{{}}.up_gate_proj.weight", "down_proj_expert_weight_key": f"{prefix}.mlp.experts.{{}}.down_proj.weight", } if ( fd_config.model_config.moe_num_experts is not None and layer_id >= fd_config.model_config.moe_layer_start_index ): self.mlp = FusedMoE( fd_config, moe_intermediate_size=fd_config.model_config.moe_intermediate_size, num_experts=fd_config.model_config.moe_num_experts, top_k=fd_config.model_config.moe_topk, layer_idx=layer_id, weight_key_map=weight_key_map, ) else: self.mlp = Qwen3MLP( fd_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-6, prefix=f"{prefix}.input_layernorm", ) self.post_attention_layernorm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-6, prefix=f"{prefix}.post_attention_layernorm", ) def load_state_dict(self, state_dict): """ """ self.self_attn.load_state_dict(state_dict) self.mlp.load_state_dict(state_dict) self.input_layernorm.load_state_dict(state_dict) self.post_attention_layernorm.load_state_dict(state_dict) def forward( self, forward_meta: ForwardMeta, hidden_states: paddle.Tensor, residual: paddle.Tensor = None, ): """ """ if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( hidden_states=hidden_states, forward_meta=forward_meta, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_graph_optimization class Qwen3MoeModel(nn.Layer): """ """ def __init__( self, fd_config: FDConfig = None, ): """ Initializer for the Qwen2Model class. Args: """ super().__init__() self.num_layers = fd_config.model_config.num_hidden_layers fd_config.model_config.pretrained_config.prefix_name = "model" self.embed_tokens = VocabParallelEmbedding( fd_config, num_embeddings=fd_config.model_config.vocab_size, embedding_dim=fd_config.model_config.hidden_size, params_dtype=paddle.get_default_dtype, prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"), ) self.layers = nn.LayerList( [ Qwen3DecoderLayer( fd_config, prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}", ) for i in range(self.num_layers) ] ) self.norm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-6, prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm", ) def load_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.embed_tokens.load_state_dict(state_dict) self.norm.load_state_dict(state_dict) for i in range(self.num_layers): logger.info(f"Start load layer {i}") self.layers[i].load_state_dict(state_dict) def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding) residual = None for i in range(self.num_layers): hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual) hidden_states = hidden_states + residual out = self.norm(hidden_states) return out class Qwen3MoeForCausalLM(ModelForCasualLM): """ Qwen3MoeForCausalLM """ def __init__(self, fd_config: FDConfig): """ Args: fd_config (FDConfig): Configurations for the LLM model. """ super(Qwen3MoeForCausalLM, self).__init__(fd_config) self.model = Qwen3MoeModel(fd_config) self.ori_vocab_size = fd_config.model_config.ori_vocab_size self.lm_head = ParallelLMHead( fd_config, embedding_dim=fd_config.model_config.hidden_size, num_embeddings=fd_config.model_config.vocab_size, prefix="lm_head", ) @classmethod def name(self): """ """ return "Qwen3MoeForCausalLM" @paddle.no_grad() def set_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.model.load_state_dict(state_dict) self.lm_head.load_state_dict(state_dict) def compute_logits(self, hidden_states: paddle.Tensor): """ """ logits = self.lm_head(hidden_states) logits = logits.astype(paddle.float32) logits[:, self.ori_vocab_size :] = -float("inf") return logits def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta) return hidden_states class Qwen3MoePretrainedModel(PretrainedModel): """ Qwen3MoePretrainedModel """ config_class = FDConfig def _init_weight(self, layer): """ _init_weight """ return None @classmethod def _get_tensor_parallel_mappings(cls, config, is_split=True): # TODO not support TP split now, next PR will support TP. from paddleformers.transformers.conversion_utils import split_or_merge_func fn = split_or_merge_func( is_split=is_split, tensor_parallel_degree=config.tensor_parallel_degree, tensor_parallel_rank=config.tensor_parallel_rank, num_attention_heads=config.num_attention_heads, ) def get_tensor_parallel_split_mappings(num_layers, num_experts): final_actions = {} base_actions = { "lm_head.weight": partial(fn, is_column=True), # Row Linear "embed_tokens.weight": partial(fn, is_column=False), "layers.0.self_attn.o_proj.weight": partial(fn, is_column=False), } # Column Linear config.fuse_attention_qkv = False if config.fuse_attention_qkv: base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(fn, is_column=True) else: base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True) # if we have enough num_key_value_heads to split, then split it. if config.num_key_value_heads % config.tensor_parallel_degree == 0: base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.k_proj.bias"] = partial(fn, is_column=True) base_actions["layers.0.self_attn.v_proj.bias"] = partial(fn, is_column=True) for key, action in base_actions.items(): if "layers.0." in key: for i in range(num_layers): final_actions[key.replace("layers.0.", f"layers.{i}.")] = action final_actions[key] = action base_actions = { "layers.0.mlp.experts.0.gate_proj.weight": partial(fn, is_column=True), "layers.0.mlp.experts.0.down_proj.weight": partial(fn, is_column=False), "layers.0.mlp.experts.0.up_proj.weight": partial(fn, is_column=True), } for key, action in base_actions.items(): for i in range(num_layers): newkey = key.replace("layers.0.", f"layers.{i}.") for j in range(num_experts): newkey2 = newkey.replace("experts.0.", f"experts.{j}.") final_actions[newkey2] = action return final_actions num_experts = 0 if isinstance(config.moe_num_experts, list): num_experts = sum(config.moe_num_experts) elif isinstance(config.moe_num_experts, int): num_experts = config.moe_num_experts else: raise ValueError(f"Not support type of num_experts [{type(config.moe_num_experts)}]") mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers, num_experts) return mappings