// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "helper.h" template __global__ void update_inputs_kernel(bool *not_need_stop, int *seq_lens_this_time, int *seq_lens_encoder, int *seq_lens_decoder, int64_t *input_ids, const int64_t *stop_nums, const bool *stop_flags, const bool *is_block_step, const int64_t *next_tokens, const int bsz, const int max_bsz, const int input_ids_stride) { int thread_idx = threadIdx.x; typedef cub::BlockReduce BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; bool stop_flag_now = false; int64_t stop_flag_now_int = 0; if (thread_idx < max_bsz) { if (thread_idx < bsz) { stop_flag_now = stop_flags[thread_idx]; if (is_block_step[thread_idx]) { stop_flag_now_int = 0; } else { stop_flag_now_int = static_cast(stop_flag_now); } } else { stop_flag_now_int = 1; } } if (thread_idx < bsz) { const int seq_len_this_time = seq_lens_this_time[thread_idx]; const int seq_len_encoder = seq_lens_encoder[thread_idx]; const int seq_len_decoder = seq_lens_decoder[thread_idx]; seq_lens_decoder[thread_idx] = stop_flag_now ? 0 : (seq_len_encoder > 0 ? (seq_len_encoder + seq_len_decoder) : seq_len_decoder + 1); seq_lens_this_time[thread_idx] = stop_flag_now ? 0 : 1; seq_lens_encoder[thread_idx] = 0; int64_t *input_ids_now = input_ids + thread_idx * input_ids_stride; input_ids_now[0] = next_tokens[thread_idx]; } __syncthreads(); int64_t stop_sum = BlockReduce(temp_storage).Sum(stop_flag_now_int); if (thread_idx == 0) { not_need_stop[0] = stop_sum < stop_nums[0]; } } void UpdateInputes(const paddle::Tensor &stop_flags, const paddle::Tensor ¬_need_stop, // only on cpu const paddle::Tensor &seq_lens_this_time, const paddle::Tensor &seq_lens_encoder, const paddle::Tensor &seq_lens_decoder, const paddle::Tensor &input_ids, const paddle::Tensor &stop_nums, const paddle::Tensor &next_tokens, const paddle::Tensor &is_block_step) { #ifdef PADDLE_WITH_CUSTOM_DEVICE auto dev_ctx = static_cast(paddle::experimental::DeviceContextPool::Instance().Get(input_ids.place())); auto cu_stream = dev_ctx->stream(); #else auto cu_stream = input_ids.stream(); #endif const int max_bsz = stop_flags.shape()[0]; const int now_bsz = seq_lens_this_time.shape()[0]; const int input_ids_stride = input_ids.shape()[1]; auto not_need_stop_gpu = not_need_stop.copy_to(stop_flags.place(), false); update_inputs_kernel<1024><<<1, 1024, 0, cu_stream>>>( const_cast(not_need_stop_gpu.data()), const_cast(seq_lens_this_time.data()), const_cast(seq_lens_encoder.data()), const_cast(seq_lens_decoder.data()), const_cast(input_ids.data()), stop_nums.data(), stop_flags.data(), is_block_step.data(), next_tokens.data(), now_bsz, max_bsz, input_ids_stride); auto not_need_stop_cpu = not_need_stop_gpu.copy_to(not_need_stop.place(), false); bool *not_need_stop_data = const_cast(not_need_stop.data()); not_need_stop_data[0] = not_need_stop_cpu.data()[0]; } PD_BUILD_STATIC_OP(update_inputs) .Inputs({"stop_flags", "not_need_stop", "seq_lens_this_time", "seq_lens_encoder", "seq_lens_decoder", "input_ids", "stop_nums", "next_tokens", "is_block_step"}) .Outputs({"not_need_stop_out", "seq_lens_this_time_out", "seq_lens_encoder_out", "seq_lens_decoder_out", "input_ids_out"}) .SetInplaceMap({{"not_need_stop", "not_need_stop_out"}, {"seq_lens_this_time", "seq_lens_this_time_out"}, {"seq_lens_encoder", "seq_lens_encoder_out"}, {"seq_lens_decoder", "seq_lens_decoder_out"}, {"input_ids", "input_ids_out"}}) .SetKernelFn(PD_KERNEL(UpdateInputes));