/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "cute/tensor.hpp" #include "cutlass_extensions/gemm_configs.h" #include "common/cudaUtils.h" namespace kernels { namespace cutlass_kernels { template struct should_filter_sm90_gemm_problem_shape { #ifdef FAST_BUILD constexpr static int TILE_K = 128 * 8 / cutlass::sizeof_bits::value; using SupportedCtaShape = cute::Shape>; using SupportedCgaShape = cute::Shape; constexpr static bool value = !cute::is_same_v || !cute::is_same_v; #else constexpr static bool value = false; #endif }; template constexpr static bool should_filter_sm90_gemm_problem_shape_v = should_filter_sm90_gemm_problem_shape::value; std::vector get_candidate_configs( int sm, int const max_split_k, cutlass_extensions::CutlassGemmConfig::CandidateConfigTypeParam const); cutlass_extensions::CutlassGemmConfig estimate_best_config_from_occupancies( std::vector const& candidate_configs, std::vector const& occupancies, int64_t const m, int64_t const n, int64_t const k, int64_t const num_experts, int const split_k_limit, size_t const workspace_bytes, int const multi_processor_count, int const is_weight_only); } // namespace cutlass_kernels } // namespace kernels