# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class PPMSVSR(FastDeployModel): def __init__(self, model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a VSR model exported by PaddleGAN. :param model_file: (str)Path of model file, e.g PPMSVSR/inference.pdmodel :param params_file: (str)Path of parameters file, e.g PPMSVSR/inference.pdiparams :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPMSVSR, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PPMSVSR model only support model format of ModelFormat.Paddle now." self._model = C.vision.sr.PPMSVSR(model_file, params_file, self._runtime_option, model_format) assert self.initialized, "PPMSVSR model initialize failed." def predict(self, input_images): """Predict the super resolution frame sequences for an input frame sequences :param input_images: list[numpy.ndarray] The input image data, 3-D array with layout HWC, BGR format :return: list[numpy.ndarray] """ assert input_images is not None, "The input image data is None." return self._model.predict(input_images) class EDVR(PPMSVSR): def __init__(self, model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a EDVR model exported by PaddleGAN. :param model_file: (str)Path of model file, e.g EDVR/inference.pdmodel :param params_file: (str)Path of parameters file, e.g EDVR/inference.pdiparams :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPMSVSR, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "EDVR model only support model format of ModelFormat.Paddle now." self._model = C.vision.sr.EDVR(model_file, params_file, self._runtime_option, model_format) assert self.initialized, "EDVR model initialize failed." def predict(self, input_images): """Predict the super resolution frame sequences for an input frame sequences :param input_images: list[numpy.ndarray] The input image data, 3-D array with layout HWC, BGR format :return: list[numpy.ndarray] """ assert input_images is not None, "The input image data is None." return self._model.predict(input_images) class BasicVSR(PPMSVSR): def __init__(self, model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a EDVR model exported by PaddleGAN. :param model_file: (str)Path of model file, e.g BasicVSR/inference.pdmodel :param params_file: (str)Path of parameters file, e.g BasicVSR/inference.pdiparams :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPMSVSR, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "BasicVSR model only support model format of ModelFormat.Paddle now." self._model = C.vision.sr.BasicVSR(model_file, params_file, self._runtime_option, model_format) assert self.initialized, "BasicVSR model initialize failed." def predict(self, input_images): """Predict the super resolution frame sequences for an input frame sequences :param input_images: list[numpy.ndarray] The input image data, 3-D array with layout HWC, BGR format :return: list[numpy.ndarray] """ assert input_images is not None, "The input image data is None." return self._model.predict(input_images)