/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include #include #include #include #include "cutlass/pipeline/pipeline.hpp" #include "cute/tensor.hpp" #include "cutlass/gemm/collective/collective_builder.hpp" #include "utils.hpp" using namespace cute; template struct CollectiveMainloopAttn { using Element = typename Ktraits::Element; using TileShape_MNK = typename Ktraits::TileShape_MNK; using ClusterShape = typename Ktraits::ClusterShape_MNK; static constexpr int kStages = Ktraits::kStages; static constexpr int kHeadDim = Ktraits::kHeadDim; static constexpr int kBlockM = Ktraits::kBlockM; static constexpr int kBlockN = Ktraits::kBlockN; static constexpr bool NeedMask = Ktraits::NeedMask; using ShapeT = cute::Shape; using StrideT = cute::Shape; using LayoutT = cute::Layout; using GmemTiledCopyQ = cute::SM90_TMA_LOAD; using GmemTiledCopyKV = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<0>(ClusterShape{}))); using GmemTiledCopyO = typename Ktraits::GmemTiledCopyO; using SmemLayoutAtomQ = decltype(cutlass::gemm::collective::detail::ss_smem_selector(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>()); using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQ{}, select<0, 2>(TileShape_MNK{}))); using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>()); using SmemLayoutK = decltype(tile_to_shape(SmemLayoutAtomK{}, make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int{}))); using SmemLayoutV = SmemLayoutK; // Note this is the transpose in terms of the view, not in terms of memory. using SmemLayoutVt = decltype(cute::composition(SmemLayoutV{}, make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{}), Int{}), make_stride(get<1>(TileShape_MNK{}), _1{}, Int{})))); using SmemLayoutO = typename Ktraits::SmemLayoutO; using SmemCopyAtomO = typename Ktraits::SmemCopyAtomO; using TMA_Q = decltype(make_tma_copy( GmemTiledCopyQ{}, make_tensor( make_gmem_ptr(static_cast(nullptr)), repeat_like(StrideT{}, int32_t(0)), StrideT{} ), SmemLayoutQ{}, select<0, 2>(TileShape_MNK{}), _1{})); // no mcast for Q using TMA_KV = decltype(make_tma_copy( GmemTiledCopyKV{}, make_tensor( make_gmem_ptr(static_cast(nullptr)), repeat_like(StrideT{}, int32_t(0)), StrideT{} ), take<0, 2>(SmemLayoutK{}), select<1, 2>(TileShape_MNK{}), size<0>(ClusterShape{}))); // mcast along M mode for this N load, if any static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{}); using MainloopPipeline = typename Ktraits::MainloopPipeline; using PipelineParams = typename MainloopPipeline::Params; using PipelineState = typename MainloopPipeline::PipelineState; // Set the bytes transferred in this TMA transaction (may involve multiple issues) static constexpr uint32_t TmaTransactionBytesQ = static_cast(size(SmemLayoutQ{}) * cutlass::sizeof_bits_v / 8); static constexpr uint32_t TmaTransactionBytesK = static_cast(size(take<0, 2>(SmemLayoutK{})) * cutlass::sizeof_bits_v / 8); static constexpr bool UseSchedulerBarrier = kHeadDim <= 128; // Host side kernel arguments struct Arguments { Element const* ptr_Q; LayoutT layout_Q; Element const* ptr_K; LayoutT layout_K; Element const* ptr_V; LayoutT layout_V; float const softmax_scale_log2; }; // Device side kernel params struct Params { LayoutT layout_Q; LayoutT layout_K; LayoutT layout_V; cutlass::FastDivmod qhead_per_khead_divmod; TMA_Q tma_load_Q; TMA_KV tma_load_K, tma_load_V; float const softmax_scale_log2; }; static Params to_underlying_arguments(Arguments const& args) { Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.layout_Q); TMA_Q tma_load_Q = make_tma_copy( GmemTiledCopyQ{}, mQ, SmemLayoutQ{}, select<0, 2>(TileShape_MNK{}), _1{}); Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.layout_K); TMA_KV tma_load_K = make_tma_copy( GmemTiledCopyKV{}, mK, SmemLayoutK{}(_, _, _0{}), select<1, 2>(TileShape_MNK{}), size<0>(ClusterShape{})); // mcast along M mode for this N load, if any Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V), args.layout_V); TMA_KV tma_load_V = make_tma_copy( GmemTiledCopyKV{}, mV, SmemLayoutV{}(_, _, _0{}), select<1, 2>(TileShape_MNK{}), size<0>(ClusterShape{})); // mcast along M mode for this N load, if any return {args.layout_Q, args.layout_K, args.layout_V, cutlass::FastDivmod(cute::ceil_div(get<2>(args.layout_Q.shape()), get<2>(args.layout_K.shape()))), tma_load_Q, tma_load_K, tma_load_V, args.softmax_scale_log2}; } /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance CUTLASS_DEVICE static void prefetch_tma_descriptors(Params const& mainloop_params) { cute::prefetch_tma_descriptor(mainloop_params.tma_load_Q.get_tma_descriptor()); cute::prefetch_tma_descriptor(mainloop_params.tma_load_K.get_tma_descriptor()); cute::prefetch_tma_descriptor(mainloop_params.tma_load_V.get_tma_descriptor()); } template CUTLASS_DEVICE auto get_local_tile_tensor( const MTensor &m_tensor, const Shape &tile_shape, const int *cu_seq_len, const int bidh, const int bidb, const int actual_seq_len) const { auto g_offset = local_tile( m_tensor(_, _, bidh), cute::make_shape(1, get<1>(tile_shape)), make_coord(cu_seq_len[bidb], _0{})); auto g_sequence = make_tensor( g_offset.data(), make_layout( cute::make_shape(actual_seq_len, get<1>(tile_shape)), g_offset.stride() )); auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_, _0{})); return g_tensor; } template CUTLASS_DEVICE void load(Params const& mainloop_params, MainloopPipeline pipeline_k, MainloopPipeline pipeline_v, PipelineState& smem_pipe_write_k, PipelineState& smem_pipe_write_v, SharedStorage &shared_storage, const int n_block_max, const int m_block, const int bidh, const int bidb, const int *cu_seq_q, const int *cu_seq_k, const int seq_len_q, const int seq_len_k) { Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), SmemLayoutQ{}); Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), SmemLayoutK{}); Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), SmemLayoutV{}); Tensor mQ = mainloop_params.tma_load_Q.get_tma_tensor(mainloop_params.layout_Q.shape()); Tensor mK = mainloop_params.tma_load_K.get_tma_tensor(mainloop_params.layout_K.shape()); Tensor mV = mainloop_params.tma_load_V.get_tma_tensor(mainloop_params.layout_V.shape()); int bidh_kv = mainloop_params.qhead_per_khead_divmod.divide(bidh); Tensor gQ = get_local_tile_tensor( mQ, select<0, 2>(TileShape_MNK{}), cu_seq_q, bidh, bidb, seq_len_q)(_, _, m_block); Tensor gK = get_local_tile_tensor( mK, select<1, 2>(TileShape_MNK{}), cu_seq_k, bidh_kv, bidb, seq_len_k); Tensor gV = get_local_tile_tensor( mV, select<1, 2>(TileShape_MNK{}), cu_seq_k, bidh_kv, bidb, seq_len_k); Tensor sQ_x = make_tensor(sQ.data(), make_layout(sQ.layout(), Layout<_1>{})); Tensor gQ_x = make_tensor(gQ.data(), make_layout(gQ.layout(), Layout<_1>{})); auto [tQgQ, tQsQ] = tma_partition(mainloop_params.tma_load_Q, _0{}, Layout<_1>{},group_modes<0, 2>(sQ_x), group_modes<0, 2>(gQ_x)); auto [tKgK, tKsK] = tma_partition(mainloop_params.tma_load_K, _0{}, Layout<_1>{},group_modes<0, 2>(sK), group_modes<0, 2>(gK)); auto [tVgV, tVsV] = tma_partition(mainloop_params.tma_load_V, _0{}, Layout<_1>{},group_modes<0, 2>(sV), group_modes<0, 2>(gV)); uint16_t mcast_mask_kv = 0; int n_block = n_block_max - 1; int lane_predicate = cute::elect_one_sync(); if (lane_predicate) { shared_storage.barrier_Q.arrive_and_expect_tx(TmaTransactionBytesQ); copy(mainloop_params.tma_load_Q.with(reinterpret_cast(shared_storage.barrier_Q), 0 /*mcast_mask*/), tQgQ, tQsQ); } if (lane_predicate) { pipeline_k.producer_acquire(smem_pipe_write_k); copy(mainloop_params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv), tKgK(_, n_block), tKsK(_, smem_pipe_write_k.index())); ++smem_pipe_write_k; } if (lane_predicate) { #pragma unroll 2 for (; n_block > 0; --n_block) { pipeline_k.producer_acquire(smem_pipe_write_k); copy(mainloop_params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv), tKgK(_, n_block - 1), tKsK(_, smem_pipe_write_k.index())); ++smem_pipe_write_k; pipeline_v.producer_acquire(smem_pipe_write_v); copy(mainloop_params.tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv), tVgV(_, n_block), tVsV(_, smem_pipe_write_v.index())); ++smem_pipe_write_v; } } if (lane_predicate) { pipeline_v.producer_acquire(smem_pipe_write_v); copy(mainloop_params.tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv), tVgV(_, n_block), tVsV(_, smem_pipe_write_v.index())); ++smem_pipe_write_v; } } template CUTLASS_DEVICE void mma(Params const& mainloop_params, MainloopPipeline pipeline_k, MainloopPipeline pipeline_v, PipelineState& smem_pipe_read_k, PipelineState& smem_pipe_read_v, FrgTensorO& tOrO, Softmax& softmax, const int *mask, const int n_block_max, const int thread_idx, const int m_block, const int seq_len_q, const int seq_len_k, SharedStorage& shared_storage) { Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), SmemLayoutQ{}); Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), SmemLayoutK{}); Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), SmemLayoutVt{}); typename Ktraits::TiledMma0 tiled_mma0; typename Ktraits::TiledMma1 tiled_mma1; auto threadMma0 = tiled_mma0.get_thread_slice(thread_idx); auto threadMma1 = tiled_mma1.get_thread_slice(thread_idx); Tensor tSrQ = threadMma0.partition_fragment_A(sQ); Tensor tSrK = threadMma0.partition_fragment_B(sK); Tensor tOrV = threadMma1.partition_fragment_B(sVt); auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) { auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read); pipeline.consumer_wait(smem_pipe_read, barrier_token); }; tiled_mma1.accumulate_ = GMMA::ScaleOut::Zero; int n_block = n_block_max - 1; cutlass::ConsumerToken barrier_token = static_cast(shared_storage.barrier_Q.try_wait(0)); if (barrier_token == cutlass::BarrierStatus::WaitAgain) { shared_storage.barrier_Q.wait(0); } Tensor tSrS = partition_fragment_C(tiled_mma0, select<0, 1>(TileShape_MNK{})); consumer_wait(pipeline_k, smem_pipe_read_k); gemm(tiled_mma0, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS); warpgroup_wait<0>(); pipeline_k.consumer_release(smem_pipe_read_k); ++smem_pipe_read_k; int mask_start_idx; int mask_row_id; int col_base; if constexpr (NeedMask) { const int lane_id = thread_idx % 32; mask_start_idx = mask[0] / kBlockN - 1; mask_row_id = thread_idx / 32 * 16 + lane_id / 4; col_base = thread_idx % 4 * 2; app_mask( tSrS, mask, mask_row_id, col_base + n_block * kBlockN); } else { auto col_limit_causal = [&](int row, int n_block) { return row + 1 + seq_len_k - n_block * kBlockN - seq_len_q + m_block * kBlockM; }; Tensor cS = cute::make_identity_tensor(select<0, 1>(TileShape_MNK{})); Tensor tScS = threadMma0.partition_C(cS); #pragma unroll for (int i = 0; i < size(tSrS); ++i) { if (int(get<1>(tScS(i))) >= std::min(seq_len_k - n_block * kBlockN, col_limit_causal(int(get<0>(tScS(i))), n_block))) { tSrS(i) = -INFINITY; } } } softmax.template online_softmax(tSrS, mainloop_params.softmax_scale_log2); Tensor tOrP = make_tensor(convert_type(tSrS).data(), convert_layout_acc_Aregs(tSrS.layout())); Tensor scores_scale = make_fragment_like(softmax.row_max); clear(scores_scale); #pragma unroll 1 for (; n_block > 0; --n_block) { Tensor tSrS = partition_fragment_C(tiled_mma0, select<0, 1>(TileShape_MNK{})); consumer_wait(pipeline_k, smem_pipe_read_k); if constexpr (NeedMask) { if (n_block >= mask_start_idx) { app_mask( tSrS, mask, mask_row_id, col_base + n_block * kBlockN); } } gemm(tiled_mma0, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS); softmax.rescale_o(tOrO, scores_scale); consumer_wait(pipeline_v, smem_pipe_read_v); gemm(tiled_mma1, tOrP, tOrV(_, _, _, smem_pipe_read_v.index()), tOrO); warpgroup_wait<1>(); pipeline_k.consumer_release(smem_pipe_read_k); // release K cute::copy(softmax.template max(tSrS, mainloop_params.softmax_scale_log2), scores_scale); softmax.template online_softmax(tSrS, mainloop_params.softmax_scale_log2); warpgroup_wait<0>(); pipeline_v.consumer_release(smem_pipe_read_v); // release V ++smem_pipe_read_k; ++smem_pipe_read_v; cute::copy(make_tensor(convert_type(tSrS).data(), convert_layout_acc_Aregs(tSrS.layout())), tOrP); } softmax.rescale_o(tOrO, scores_scale); consumer_wait(pipeline_v, smem_pipe_read_v); gemm(tiled_mma1, tOrP, tOrV(_, _, _, smem_pipe_read_v.index()), tOrO); cute::copy(softmax.finalize(mainloop_params.softmax_scale_log2), scores_scale); warpgroup_wait<0>(); pipeline_v.consumer_release(smem_pipe_read_v); ++smem_pipe_read_v; softmax.rescale_o(tOrO, scores_scale); return; } template CUTLASS_DEVICE void store(Params const& mainloop_params, FrgTensorO const& tOrO, SharedStorage& shared_storage, TiledMma tiled_mma, int thread_idx, const int o_head_stride, const int real_seq, T * out_ptr) { Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutO{}); auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma); auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx); Tensor tOrO_out = convert_type(tOrO); Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out); Tensor taccOsO = smem_thr_copy_O.partition_D(sO); cute::copy(smem_tiled_copy_O, taccOrO, taccOsO); cutlass::arch::NamedBarrier::sync(NumMmaThreads, 0); Tensor gO = make_tensor(make_gmem_ptr(out_ptr), Shape, Int>{}, make_stride(o_head_stride, _1{})); GmemTiledCopyO gmem_tiled_copy_O; auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx); Tensor tOsO = gmem_thr_copy_O.partition_S(sO); Tensor tOgO = gmem_thr_copy_O.partition_D(gO); Tensor cO = make_identity_tensor(Shape, Int>{}); Tensor tOcO = gmem_thr_copy_O.partition_S(cO); if (real_seq >= kBlockM) { copy(gmem_tiled_copy_O, tOsO, tOgO, tOcO); } else { copy(gmem_tiled_copy_O, tOsO, tOgO, tOcO, real_seq); } } };