import fastdeploy as fd import cv2 import os import time def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PaddleClas model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--topk", type=int, default=1, help="Return topk results.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'intel_gpu'.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() option.use_openvino_backend() assert args.device.lower( ) in ["cpu", "intel_gpu"], "--device only support ['cpu', 'intel_gpu']" if args.device.lower() == "intel_gpu": option.set_openvino_device("GPU") option.set_openvino_shape_info({"inputs": [1, 3, 224, 224]}) return option args = parse_arguments() runtime_option = build_option(args) model_file = os.path.join(args.model, "inference.pdmodel") params_file = os.path.join(args.model, "inference.pdiparams") config_file = os.path.join(args.model, "inference_cls.yaml") model = fd.vision.classification.PaddleClasModel( model_file, params_file, config_file, runtime_option=runtime_option) im = cv2.imread(args.image) print("Warmup 20 times...") for i in range(20): result = model.predict(im, args.topk) print("Counting time...") start = time.time() for i in range(50): result = model.predict(im, args.topk) end = time.time() print("Elapsed time: {}ms".format((end - start) * 1000)) print(result)