import fastdeploy as fd import cv2 import os import time def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PP-YOLOE model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'intel_gpu'.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() option.use_openvino_backend() assert args.device.lower( ) in ["cpu", "intel_gpu"], "--device only support ['cpu', 'intel_gpu']" if args.device.lower() == "intel_gpu": option.set_openvino_device("HETERO:GPU,CPU") option.set_openvino_shape_info({ "image": [1, 3, 640, 640], "scale_factor": [1, 2] }) option.set_openvino_cpu_operators(["MulticlassNms"]) return option args = parse_arguments() runtime_option = build_option(args) model_file = os.path.join(args.model, "model.pdmodel") params_file = os.path.join(args.model, "model.pdiparams") config_file = os.path.join(args.model, "infer_cfg.yml") model = fd.vision.detection.PPYOLOE( model_file, params_file, config_file, runtime_option=runtime_option) im = cv2.imread(args.image) print("Warmup 20 times...") for i in range(20): result = model.predict(im) print("Counting time...") start = time.time() for i in range(50): result = model.predict(im) end = time.time() print("Elapsed time: {}ms".format((end - start) * 1000)) vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")