// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/ocr/ppocr/cls_preprocessor.h" #include "fastdeploy/function/concat.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h" namespace fastdeploy { namespace vision { namespace ocr { ClassifierPreprocessor::ClassifierPreprocessor() { resize_op_ = std::make_shared(-1, -1); std::vector value = {0, 0, 0}; pad_op_ = std::make_shared(0, 0, 0, 0, value); normalize_op_ = std::make_shared(std::vector({0.5f, 0.5f, 0.5f}), std::vector({0.5f, 0.5f, 0.5f}), true); hwc2chw_op_ = std::make_shared(); } void ClassifierPreprocessor::OcrClassifierResizeImage( FDMat* mat, const std::vector& cls_image_shape) { int img_c = cls_image_shape[0]; int img_h = cls_image_shape[1]; int img_w = cls_image_shape[2]; float ratio = float(mat->Width()) / float(mat->Height()); int resize_w; if (ceilf(img_h * ratio) > img_w) resize_w = img_w; else resize_w = int(ceilf(img_h * ratio)); resize_op_->SetWidthAndHeight(resize_w, img_h); (*resize_op_)(mat); } bool ClassifierPreprocessor::Run(std::vector* images, std::vector* outputs, size_t start_index, size_t end_index) { if (images->size() == 0 || start_index < 0 || end_index <= start_index || end_index > images->size()) { FDERROR << "images->size() or index error. Correct is: 0 <= start_index < " "end_index <= images->size()" << std::endl; return false; } std::vector mats(end_index - start_index); for (size_t i = start_index; i < end_index; ++i) { mats[i - start_index] = images->at(i); } return Run(&mats, outputs); } bool ClassifierPreprocessor::Apply(FDMatBatch* image_batch, std::vector* outputs) { for (size_t i = 0; i < image_batch->mats->size(); ++i) { FDMat* mat = &(image_batch->mats->at(i)); OcrClassifierResizeImage(mat, cls_image_shape_); if (!disable_normalize_) { (*normalize_op_)(mat); } std::vector value = {0, 0, 0}; if (mat->Width() < cls_image_shape_[2]) { pad_op_->SetPaddingSize(0, 0, 0, cls_image_shape_[2] - mat->Width()); (*pad_op_)(mat); } if (!disable_permute_) { (*hwc2chw_op_)(mat); } } // Only have 1 output tensor. outputs->resize(1); // Get the NCHW tensor FDTensor* tensor = image_batch->Tensor(); (*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(), tensor->Data(), tensor->device, tensor->device_id); return true; } } // namespace ocr } // namespace vision } // namespace fastdeploy