// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace headpose { /*! @brief FSANet model object used when to load a FSANet model exported by FSANet. */ class FASTDEPLOY_DECL FSANet : public FastDeployModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./fsanet-var.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends" * \param[in] model_format Model format of the loaded model, default is ONNX format */ FSANet(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); std::string ModelName() const { return "FSANet"; } /** \brief Predict the face detection result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result The output face detection result will be writen to this structure * \return true if the prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, HeadPoseResult* result); /// tuple of (width, height), default (64, 64) std::vector size; private: bool Initialize(); bool Preprocess(Mat* mat, FDTensor* outputs, std::map>* im_info); bool Postprocess(FDTensor& infer_result, HeadPoseResult* result, const std::map>& im_info); }; } // namespace headpose } // namespace vision } // namespace fastdeploy