// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/classification/ppcls/preprocessor.h" #include "fastdeploy/vision/classification/ppcls/postprocessor.h" namespace fastdeploy { namespace vision { /** \brief All classification model APIs are defined inside this namespace * */ namespace classification { /*! @brief PaddleClas serials model object used when to load a PaddleClas model exported by PaddleClas repository */ class FASTDEPLOY_DECL PaddleClasModel : public FastDeployModel { public: /** \brief Set path of model file and configuration file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g resnet/model.pdmodel * \param[in] params_file Path of parameter file, e.g resnet/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends` * \param[in] model_format Model format of the loaded model, default is Paddle format */ PaddleClasModel(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); /** \brief Clone a new PaddleClasModel with less memory usage when multiple instances of the same model are created * * \return new PaddleClasModel* type unique pointer */ virtual std::unique_ptr Clone() const; /// Get model's name virtual std::string ModelName() const { return "PaddleClas/Model"; } /** \brief DEPRECATED Predict the classification result for an input image, remove at 1.0 version * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output classification result will be writen to this structure * \return true if the prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1); /** \brief Predict the classification result for an input image * * \param[in] img The input image data, comes from cv::imread() * \param[in] result The output classification result * \return true if the prediction successed, otherwise false */ virtual bool Predict(const cv::Mat& img, ClassifyResult* result); /** \brief Predict the classification results for a batch of input images * * \param[in] imgs, The input image list, each element comes from cv::imread() * \param[in] results The output classification result list * \return true if the prediction successed, otherwise false */ virtual bool BatchPredict(const std::vector& imgs, std::vector* results); /** \brief Predict the classification result for an input image * * \param[in] mat The input mat * \param[in] result The output classification result * \return true if the prediction successed, otherwise false */ virtual bool Predict(const FDMat& mat, ClassifyResult* result); /** \brief Predict the classification results for a batch of input images * * \param[in] mats, The input mat list * \param[in] results The output classification result list * \return true if the prediction successed, otherwise false */ virtual bool BatchPredict(const std::vector& mats, std::vector* results); /// Get preprocessor reference of PaddleClasModel virtual PaddleClasPreprocessor& GetPreprocessor() { return preprocessor_; } /// Get postprocessor reference of PaddleClasModel virtual PaddleClasPostprocessor& GetPostprocessor() { return postprocessor_; } protected: bool Initialize(); PaddleClasPreprocessor preprocessor_; PaddleClasPostprocessor postprocessor_; }; typedef PaddleClasModel PPLCNet; typedef PaddleClasModel PPLCNetv2; typedef PaddleClasModel EfficientNet; typedef PaddleClasModel GhostNet; typedef PaddleClasModel MobileNetv1; typedef PaddleClasModel MobileNetv2; typedef PaddleClasModel MobileNetv3; typedef PaddleClasModel ShuffleNetv2; typedef PaddleClasModel SqueezeNet; typedef PaddleClasModel Inceptionv3; typedef PaddleClasModel PPHGNet; typedef PaddleClasModel ResNet50vd; typedef PaddleClasModel SwinTransformer; } // namespace classification } // namespace vision } // namespace fastdeploy