import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument("--model", required=True, help="Path of model.") parser.add_argument( "--config_file", required=True, help="Path of config file.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") return parser.parse_args() args = parse_arguments() # 配置runtime,加载模型 runtime_option = fd.RuntimeOption() runtime_option.use_sophgo() model_file = args.model params_file = "" config_file = args.config_file model = fd.vision.segmentation.PaddleSegModel( model_file, params_file, config_file, runtime_option=runtime_option, model_format=fd.ModelFormat.SOPHGO) # 预测图片分类结果 im_org = cv2.imread(args.image) #bmodel 是静态模型,模型输入固定,这里设置为[512, 512] im = cv2.resize(im_org, [512, 512], interpolation=cv2.INTER_LINEAR) result = model.predict(im) print(result) # 预测结果可视化 vis_im = fd.vision.vis_segmentation(im, result, weight=0.5) cv2.imwrite("sophgo_img.png", vis_im)