import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PaddleSeg model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") return parser.parse_args() runtime_option = fd.RuntimeOption() runtime_option.use_kunlunxin() # setup runtime model_file = os.path.join(args.model, "model.pdmodel") params_file = os.path.join(args.model, "model.pdiparams") config_file = os.path.join(args.model, "deploy.yaml") model = fd.vision.segmentation.PaddleSegModel( model_file, params_file, config_file, runtime_option=runtime_option) # predict im = cv2.imread(args.image) result = model.predict(im) print(result) # visualize vis_im = fd.vision.vis_segmentation(im, result, weight=0.5) cv2.imwrite("vis_img.png", vis_im)