English | [简体中文](README_CN.md) # PaddleSeg C Deployment Example This directory provides `infer.c` to finish the deployment of PaddleSeg on CPU/GPU. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/build_and_install/download_prebuilt_libraries.md) Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model. ```bash mkdir build cd build # Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download model, image files wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png # CPU inference ./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0 # GPU inference ./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1 ``` The above command works for Linux or MacOS. For SDK in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/faq/use_sdk_on_windows.md) The visualized result after running is as follows
## PaddleSeg C Interface ### RuntimeOption ```c FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper() ``` > Create a RuntimeOption object, and return a pointer to manipulate it. > > **Return** > > * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object. ```c void FD_C_RuntimeOptionWrapperUseCpu( FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper) ``` > Enable Cpu inference. > > **Params** > > * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object. ```c void FD_C_RuntimeOptionWrapperUseGpu( FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper, int gpu_id) ``` > Enable Gpu inference. > > **Params** > > * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object. > * **gpu_id**(int): gpu id ### Model ```c FD_C_PaddleSegWrapper* FD_C_CreatePaddleSegWrapper( const char* model_file, const char* params_file, const char* config_file, FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper, const FD_C_ModelFormat model_format ) ``` > Create a PaddleSeg model object, and return a pointer to manipulate it. > > **Params** > > * **model_file**(const char*): Model file path > * **params_file**(const char*): Parameter file path > * **config_file**(const char*): config file path > * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration > * **model_format**(FD_C_ModelFormat): Model format > > **Return** > > * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): Pointer to manipulate PaddleSeg object. #### Read and write image ```c FD_C_Mat FD_C_Imread(const char* imgpath) ``` > Read an image, and return a pointer to cv::Mat. > > **Params** > > * **imgpath**(const char*): image path > > **Return** > > * **imgmat**(FD_C_Mat): pointer to cv::Mat object which holds the image. ```c FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img); ``` > Write image to a file. > > **Params** > > * **savepath**(const char*): save path > * **img**(FD_C_Mat): pointer to cv::Mat object > > **Return** > > * **result**(FD_C_Bool): bool to indicate success or failure #### Prediction ```c FD_C_Bool FD_C_PaddleSegWrapperPredict( FD_C_PaddleSegWrapper* fd_c_ppseg_wrapper, FD_C_Mat img, FD_C_SegmentationResult* result) ``` > > Predict an image, and generate result. > > **Params** > * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): Pointer to manipulate PaddleSeg object. > * **img**(FD_C_Mat): pointer to cv::Mat object, which can be obained by FD_C_Imread interface > * **result**(FD_C_SegmentationResult*): Segmentation prediction results, Refer to [Vision Model Prediction Results](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/) for SegmentationResult #### Result ```c FD_C_Mat FD_C_VisSegmentation(FD_C_Mat im, FD_C_SegmentationResult* result, float weight) ``` > > Visualize segmentation results and return visualization image. > > **Params** > * **im**(FD_C_Mat): pointer to input image > * **segmentation_result**(FD_C_SegmentationResult*): pointer to C FD_C_SegmentationResult structure > * **weight**(float): weight transparent weight of visualized result image > > **Return** > * **vis_im**(FD_C_Mat): pointer to visualization image. ## Other Documents - [PPSegmentation Model Description](../../) - [PaddleSeg Python Deployment](../python) - [Model Prediction Results](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/) - [How to switch the model inference backend engine](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/en/faq/how_to_change_backend.md)