English | [简体中文](README_CN.md)
# MODNet C++ Deployment Example
This directory provides examples that `infer.cc` fast finishes the deployment of ArcFace on CPU/GPU and GPU accelerated by TensorRT.
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
```bash
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download the official converted MODNet model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
# CPU inference
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 0
# GPU inference
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 1
# TensorRT inference on GPU
./infer_demo modnet_photographic_portrait_matting.onnx matting_input.jpg matting_bgr.jpg 2
```
The visualized result after running is as follows
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
## MODNet C++ Interface
### MODNet Class
```c++
fastdeploy::vision::matting::MODNet(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
MODNet model loading and initialization, among which model_file is the exported ONNX model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. Only passing an empty string when the model is in ONNX format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. ONNX format by default
#### Predict Function
> ```c++
> MODNet::Predict(cv::Mat* im, MattingResult* result,
> float conf_threshold = 0.25,
> float nms_iou_threshold = 0.5)
> ```
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **im**: Input images in HWC or BGR format
> > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for MattingResult
> > * **conf_threshold**: Filtering threshold of detection box confidence
> > * **nms_iou_threshold**: iou threshold during NMS processing
### Class Member Variable
#### Pre-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
> > * **size**(vector<int>): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [256, 256]
> > * **alpha**(vector<float>): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`,alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]
> > * **beta**(vector<float>): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`,beta defaults to [-1.f, -1.f, -1.f]
> > * **swap_rb**(bool): Whether to convert BGR to RGB in pre-processing. Default True
- [Model Description](../../)
- [Python Deployment](../python)
- [Vision Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)